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TECHNICAL MEMORANDUM X-53829 

A DISCUSSION OF OR3lTALWOWKSHOP ORiENTATIOPi 
AND GRAVITATIONAL EFFECTS 

I NTRO D UCT I ON 

Most of the material contained in this report is an extension and 
docwnentation of the work performed to support the George C. Marshall Space 
Flight Center (MSFC) "Early Saturn V Workshop" studies. During these 
preliminary design studies, this group was assigned the task of evaluating 
the control requirements for various attitude hold modes, especially the fuel 
requirements and the momentum storage capacity over an extended time inter- 
val. A quick assessment of the energy requirements necessary to attitude hold 
Workshop B (OWS-B) in an inertial, solar fixed mode was made using simplify- 
ing assumptions. However, earth and orbit fixed modes were also evaluated 
for comparative purposes. The two basic configurations studied were the side 
viewing and the end viewing Apollo Telescope Mount (ATM) . Both have similar 
mass  and inertial properties with the x-axis being near symmetric with mini- 
mum inertia. The material presented, herein, is in the form of "A Tutorial 
Discussion of Orbital Workshop Orientation and Gravitational Effects. 

The "Early Saturn V Workshop" study was conducted under the following 
ground rules: 

I. 1971-73 launch - late 1968 Phase D start 

2. 28.5- to 50-degree orbital inclination 

3. 270-n. mi. altitude 

4. Zero-g operation 

5. One to one and one-half-year lifetime 

6 .  Dry launched workshop with integral ATM, manned Command 
Service Module (CSM) 



7. Minimum modification to Workshop A 

8. Maximum use of present equipment and subsystems 

9. Three-man operation with six-man provisions as an option 

The zero-g operation ground rule precludes a spin stabilization mode. 
"Maximum use of present eqGipment and subsystems" requires that the 
"integral ATM" be hard mounted to OWS-B which precludes a long axis per- 
pendicular to the orbital plane (POP) mode orientation while viewing the sun. 
However, for completeness the POP mode orientation is evaluated, in which 
case both the ATM and solar panels must be gimbaled. For  either a solar 
inertially fixed mode o r  a semi-solar fixed mode with one ,body axis constrained 
to lie in the orbital plane, it is not necessary to gimbal the ATM or  solar panels. 

Based on the ground rules, the following assumptions are made to pro- 
duce worst case conditions and simplify analysis procedures : 

i . Quick-look simplified analysis utilizes fixed time of year, constant 
circular orbit and an energy evaluation over one orbital time period. 

2. Winter solstice launch at 270 n. mi. altitude 

3 .  Solar attitude hold over one orbit 

4. Energy requirements for attitude hold due primarily to gravity 
gradient torques 

5. Hard mounted ATM for the side and end view ATM modes 

6 .  Body axes are solar oriented for hard mounted ATM configurations. 

A t  a 270-n. mi. altitude, gravity gradient torques will be the dominant 
environmental forces acting on the workshop and, for preliminary design pur- 
poses, will determine the control system energy requirements for attitude 
hold. Although other environmental forces such as aerodynamics and solar 
pressure will act on the workshop, only the gravity gradient effects are con- 
sidered in this report. First, the basic gravity gradient torque equations are 
derived in general form, after which various coordinate systems must be 
defined that relate the local gravity gradient vector to the workshop's body 
fixed control axes. The coordinate systems are defined in physically meaning- 
fu l  geo-physical terms and the necessary coordinate transformations are 
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carried out. Then the gravity gradient equations a r e  evaluated for several  
attitude hold modes. The end view ATM configuration is in a solar inertially 
fixed mode (solar mode) , the side view ATM configuration is in a semisolar 
fixed mode with the x-axis constrained to lie in the orbital plane (XOP mode) , 
and the gimbaled ATM configuration is in an earth fixed mode with the x-axis 
constrained to lie perpendicular to the orbital plane (POP Mode) . The effects 
of principal axes misalignments on gravity gradient torques are evaluated for 
the POP mode and the gravity gradient mode (GG Mode) with the axis of mini- 
mum inertia aligned with the local vertical. For earth or orbital fixed modes, 
an experiment package designed to view the sun or stars must be mounted to the 
workshop on gimbals. The gimbals are articulated as needed to track the 
specified target, which requires definition of "look angles. ' I  Several such 
angles are defined and closed form solutions obtained in the section on "Solar 
Look Angles. 'I  Several such angles are needed to evaluate the gravity gradient 
equations. Finally, using simplifying assumptions, involving fixed time of 
year analysis which neglects orbital regression, the energy requirements 
necessary for attitude hold against gravity gradient are summarized for the 
selected attitude hold modes. A comparison of requirements indicates that the 
XOP mode is near optimal and is preferred over the solar inertia mode. For  
earth fixed modes, the POP mode has several advantages over the GG mode, in 
particular the effect of principal axes misalignments o r  attitude e r ro r s  requires 
less fuel for control action. 

It is felt that the presented material can be easily utilized for "quick 
look" analysis of orbital orientation and gravity gradient effects, and should be 
useful for preliminary design purposes. It is also felt that the material is 
somewhat elementary, but should give an "engineering feel" for the problems 
involved in selecting a preferred attitude hold orientation for an earth orbiting 
vehicle. The data presented can be easily adapted for use in evaluating other 
attitude hold orientations. For completeness the standard Euler equations are 
listed in the appendix. 

GRAVITY GRADIENT TORQUE 

The easiest means of describing the basic gravity gradient torque is in 
terms of two equal mass  units connected by a rigid massless rod in a circular 
earth orbit as shown in Figure I. The forces Fi and F2 represent forces 
from the gravitational field in a geocentric rotating reference system (local 
vertical coordinates) that act on the mass  units ml and m2 , respectively. 
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Since the gravitational force acting on a given object varies inversely with the 
square of the distance between the earth's center and the object's center of 
mass, the force F1 is greater than the force F2 . Each force produces a 
torque about the center of mass;  however, since each force acts on the same 
lever a rm,  L , a torque in the counterclockwise direction exists. This 
torque acts to reduce the attitude e r r o r  E and to align the rod with the local 
vertical. When the attitude e r ro r  angle is zero the two forces act through the 
center of mass  of the dumbbell, and no net torque exists since the lever a rms  
are zero. This position is referred to a s  a "stable equilibrium point" of an 
orbiting satellite under the influence of gravity. 

1 
Another equilibrium point exists 

as indicated in Figure 2. If the dumb- 
bell lies in a horizontal plane, the two 
tip masses a re  at the same distance 
from the geocenter so that the forces 
Fi and Fz a r e  equal. Since the lever 
a rm on which each force acts is also 
equal, no net torque exists. .If an 
attitude e r r o r  angle E ,  is introduced, 

the force F, exceeds the force F2 
and a torque is generated which tends 
to increase the attitude e r ro r  angle. 
In this case the gravity gradient torque 

-8. 

4 Geocenter 

Chi 

FIGURE I. STABLE EQUILIBRIUM 

is destabilizing. Hence, the horizon- 
tal plane alignment is referred to a s  
an "unstable equilibrium point. " 

For a satellite in orbit several 
stable or unstable equilibrium points 
may exist, depending upon the vehi- 
cle's mass distribution properties. 
In general, a rigid, non-spinning 
satellite with sufficient differences 

- - - - - -  TI 
1 Geocenter 

FIGURE 2. UNSTABLE EQUILIBRIUM 
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in the principal moments of inertia tends to align i ts  axis of minimum inertia 
with the local vertical and its axis of maximum inertia with the orbital spin 
vector. In actual practice, finding equilibrium points is usually achieved 
through the use of elaborate digital computer programs and facilities. However, 
the vector components of gravity gradient torque are derived in general form 
using the inverse square law for the force between the earth and an orbiting 
body composed of mass elements. 

Figure 3 represents a body composed of mass elements, m. in a 

about the earth. The vector Eo is directed 
1 ,  

circular orbit of radius E 
from the geocenter to the center of mass of the body; the vector 7 i s  directed 

from the geocenter to the ith mass element, and the vector 

from the center of mass (CM) to the i mass element. The vectors a re  
defined relative to two coordinate systems : an inertial frame, denoted by the 
subscripts i, with its origin at the geocenter and a body-fixed moving frame, 

0 )  

1 

is directed 
1 th 

denoted by the subscript b, with its origin 

force vector, F, , acting on the i mass th - 
1 

and is given by 

at  the body’s CM. The gravitational 

particle is directed opposite 
1 

where p = GM. G is the universal 
gravitational constant and M is the 
mass of the earth. 

The moment (torque) due to 
F. is given by the vector cross  pro- 

duct , 
1 

- - 
T. = P. x F 
1 1 i 

The summation of all such 
moments - gives the gravity gradient 
torque, T which acts on the 
body . g ’  

/ 
ORBIT 

/ EARTH CENTER 

X 1  / 
- -  

Fi = R, + P i  

Fi =. p mi7/l r i  1 3  

FIGURE 3. COORDINATES FOR 
GRAVITY GRADIENT TORQUES 
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- 
T g = C - i ; x F ' = ~ i  i x b  + ~ j  Y b  + T k b  Z 

Assume that in body coordinates 
- 
P. = X.i + Y.j + Zikb 
1 i b  i b  

- 
+ Rzkb R = R i  + R j  

0 x b  Y b  

- - 
and from Figure 3, r. = R + Pi . Expanding i/(ri) = i/ r in a 

power series gives 
1 0  I iI 

1 0 

R 2  1 +  
0 

- 
3 R  * P  

o i  + ----------- =(s)b 0 - ($)($I 0 -. R 2  0 
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where the second and higher order terms in P. may be neglected since 

P. << R . Substituting equation (5) into the torque equation (3b) gives 
1 

1 0 

Pmi 

0 
R T = -cPi  X '7 

0 
g R 

- -  
P . x  E +T.x T.)( Pmi )( - 3R;; pi) 

0 
=-e( 1 0 1 1 R3 

0 

- 
By definition of the CM in body coordinates, E m i  Pi = 0 , the first term of 
equation ( 6 )  is zero leaving' 

b + (Z.R i x  - X R  i z ) b  j 

* ( 7 )  

By carrying out the indicated scalar multiplication and using the following 
definitions for products and moments of inertia 

= cmi(z.Z 1 + x;) , 

I .  If the origin of the body coordinates is not assumed to be located at the CM 
then the first term of equation ( 6 )  is not zero and the ensuing equations are 
not valid. 
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m.X.Y. ' = E  1 1 1  
I = I  
XY Yx 

I = I = 2rn.X.Z xz ZX i i i  ' 

with the relations 

the gravity gradient torque equation becomes 

( R 2 - R i ) + I  z x z y  R R  - I  z y z x  R R ] %  . 
X Y  Yx Y 0 

The gravity gradient torque components in body fixed coordinates, denoted by 
T T and T are obtained by equating to the vector coefficients in the x' y) Z )  

torque equation above. 
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Since the torque and momentum components will be derived for several 
selected vehicle orientations, the equations can be simplified by using the 
following definitions for the multiplicative coefficients containing vehicle and 
orbital parameters: 

c = (3GM/2Ri)(Iz -12 , 
X 

c =  
Y 

(3GM/2R3) (I  - I ) o x z  and 

C = ( 3GM/2Ri) ( Iy - Ix) , with the relation 
Z 

c + c  + c  = o  . 
X Y Z 

A t  this point, it is assumed that the moments and products of inertia 
are known or will be given. It is further assumed that the parameters which 
define the orbit will be specified, as the orbital inclination, - orbital altitude, 
time or year, and position of orbital injection. Hence, R will be known or 

can be calculated in te rms  of a local vertical coordinate system. But for use 
in the torque equation, the components of E must be derived in terms of the 

body fixed frame. Such a derivation will require the definition and use of 
several coordinate systems and transformations between systems. The actual 
number of coordinate systems depends upon the specific mission of the orbiting 
vehicle and its desirable attitude orientation, and upon the accuracy in evalu- 
ating the torque components and the time interval over which the evaluation is 
to be made. Also ,  the transformations between coordinates shculd be related 
to parameters that have physical significance. Once the components R R 

and R 

equation ( I O ) ,  which is valid for any spacecraft in a circular orbit about the 
earth with body coordinates centered at the CM. 

0 

0 

x' yy  
have been obtained they a r e  substituted into the gravity gradient torque 

Z 

COORDINATE SYSTEMS 

In computing gravity gradient torques on the Solar oriented orbital 
workshop ( OWS) several coordinate transformations are necessary to relate 
the orbital plane, the earth's equatorial plane, and the sun line in the ecliptic 
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plane, as slowly changing functions of time, to the OWS body coordinates. 
These three planes relative to the celestial sphere provide the basic references 
for development of the coordinate systems, In this development, standard 
reference systems as given in "Project Apollo Coordinate System Standards, ' I  

June 1965, OMSF report number SE 008-001-1, will be utilized. Al l  the coor- 
dinate systems which are defined in the following paragraphs a r e  right-hand 
systems and the rotational angles are measured in a positive sense using the 
right-hand rule. First, the concept of an inertial reference must be established. 

A belt of sky extending about 9 degrees to each side of the ecliptic plane 
is called the "Zodiac. '' Since ancient times, the Zodiac has been sectioned at 
intervals of 30 degrees along the ecliptic. Each 30-degree section is desig- 
nated by a "sign of the Zodiac" and bears the name of the constellation which 
occupied it in the second century B.C. A t  that time the'sun entered the Zodiac 
Aries, r ,  at the vernal equinox. The sun-Aries line is used as an inertial 
reference in the ecliptic plane, and the earth's perihelion is specified by the 
angle, A ,  subtended by the sun-Aries and sun-earth lines in the ecliptic plane. 
The earth at winter solstice is near perihelion, the actual deviation as well as 
the angle A are obtained from ephemeris tables using sidereal time. 

For practical design purposes it can be assumed that the earth's orbit 
is circular instead of elliptical and that the earth's position at winter solstice 
is identical with perihelion with A = 90 degrees. Furthermore, the earth-moon 
barycenter is assumed to be identical with earth center. These assumptions 
result in considerable simplifications in heliocentric sun-earth inertial reference 
coordinates and orbital dynamics. The earth moves about the sun at a constant 
angular rate, the earth 's  solstices and equinoxes occur at even 90-degree 
intervals measured from Aries, the moon's gravitational effects a re  ignored, 
and ephemeris tables and calculations are not necessary to specify the earth's 
seasonal position. 

Some of the simplified earth-sun relations are shown in Figure 4. The 
heliocentric inertial coordinates are denoted by (Xi, Yi, Z,) with A specify- 
ing the earth's seasonal position. Note that when the inertial coordinates a r e  
moved to earth center the position of the sun is specified by the angle, h , 
between the earth-Aries and earth-sun lines. It is apparent from Figure 4 
that h = A + 180 degrees and that both h and A have the same angular rate 
which is about 0.9565 degree pe r  solar day. A t  the vernal equinox the sun is 
between the earth and A r i e s  with h = 0 degree , while at the winter solstice 
the earth-sun line is perpendicular to the earth-Aries line with h = 270 degrees. 
The earth's equatorial plane makes a constant angle, e = 23.45 degrees with 
the ecliptic plane. The ascending line of modes is identical with the A r i e s  
inertial reference. 
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FIGURE 4. EARTH-SUN INERTIALLY REFERENCED TO ARIES 
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Additional properties of the ecliptic, equatorial and orbital planes which 
are utilized to specify the inertial position of an earth orbiting spacecraft are 
shown in Figure 5. The top part of Figure 5 represents planar look at the 
earth and sun as viewed from Aries. Note that the sun's vertical rays relative 
to the earth's surface obtain their maximum deviation from the equator at 
either the winter or summer solstice. A spacecraft launched at winter solstice 
with the ascending line of nodes on the morning terminator could achieve a 
maximum angle, q9 , between the ecliptic and orbital plane. The angle of 
orbital inclination is denoted by L , and Max q9 = e + L degrees. However, 
due to orbital regression, t j  takes on all its possible values over a time inter- 
val determined by the orbital altitude and inclination. The top part of Figure 5 
depicts the equatorial/orbital line of nodes aligned with the A r i e s  inertial 
reference, but due to orbital regression the two lines of nodes are soon mis- 
aligned by the angle shown in the lower part of Figure 5. 

The lower part of Figure 5 indicates the angular relations necessary to 
relate a spacecraft's orbital position to either inertial or solar coordinates. 
The subscript numbers on angles indicate the sequence in which the rotations 
must occur. The count may be either forward o r  backward, but the arrows 
indicate a forward count rotation that brings the solar into the spacecraft orbital 
coordinate system. The subscript letters on letters indicate specific reference 
frames which are defined in the following paragraphs. The coordinates used in 
this report are earth centered unless specified otherwise. The relation between 
the solar, inertial and geocentric coordinates are illustrated in Figure 6. 

(X , Y , Z ) are solar fixed coordinates with the X -axis directed 

from the earth to the sun, the Z -axis points north and perpendicular to the 

ecliptic plane, and the Y -axis completes the right-hand triad. 

s s s  S 

S 

S 

( X1, Y1, Z1) are inertial coordinates with the X -axis inertially fixed, 1 
pointing toward Aries,and the Z -axis perpendicular to the ecliptic plane 

pointing north. The third axis, Yl , completes the right-hand triad. The 

solar coordinates are transformed into the inertial system by rotating negatively 
about Z by the angle A . This rotation represents the apparent rotation of 

the earth in the ecliptic plane relative to the sun as measured from the vernal 
equinox . 

1 

S 

(X , Y , Z ) are geocentric inertial coordinates with the X -axis in 
g g g  g 

the equatorial plane pointing toward Aries (aligned with X ) , the Z -axis 
1 g 
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FIGURE 5. EARTH-ORBIT-ECLIPTIC GEOMETRY 
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SUN A T  VERNAL 

FIGURE 6.  GEOCENTRIC COORDINATE SYSTEMS 
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directed along the earth's mean rotational axis, positive northward, the 
Y -axis completing a right-hand system in the equatorial plane. The inertial 

coordinates a re  transformed into the geocentric inertial system by a negative 
rotation about X by the angle e = 23.5 degrees . The angle e , between 

the ecliptic and equatorial planes, is always constant and X = X is always 

on the ascending line of nodes between the two planes. 

g 

1 

1 g  

The relation between the local vertical relative to t k  spacecraft and the 
orbital and equatorial planes is also illustrated in Figure 6 .  The time varying 
angles a re  the orbital angle, cp , which specifies the spacecraft position 
relative to the ascending line of nodes between the orbital and equatorial planes, 
and the orbital regression angle, Q , which specifies the ascending line of 
node position relative to inertial direction of A r i e s  ( the line of nodes between 
the equatorial and ecliptic planes) . 

(Xe, Ye, Ze) is an earth-equatorial system with X 

line of nodes between the equatorial and orbit planes, Z = Z is perpendicular 
e g  

to the equatorial pointing northward and Y completes the triad in a positive e 
sense. The geocentric coordinates a re  transformed into the earth equatorial 
system by a rotation about Z by the angle Q , between the ecliptic-equatorial 

and equatorial-orbit lines of nodes. The angle 
regression angle, and its time derivative a s  the orbital regression rate. The 
regression rate is always negative for orbital inclinations less than 90 degrees, 
hence Q will usually be a negative angular rotation. 

on the ascending e 

g 
is denoted as the orbital 

(Xo, Yo, Zo) is an orbit-fixed coordinate system with X o e  = X on the 

is perpen- ascending line of nodes between the equatorial and orbit planes, Z 

dicular to the orbit plane pointing northward (aligned with the orbital spin 
vector),  and Yo completes the triad. The earth-equatorial system is trans- 

formed into the orbital system by a rotation about X 

angle, denoted by L . The angle of inclination can be either positive or  negative, 
but it always remains constant once its initial value is given. The angle of 
inclination is usually measured positively from the ascending line of nodes, 
when the spacecraft crosses the equator going from southern to northern hemi- 
sphere. When negative values of inclination are used, the reverse type cross- 
ing is used a s  a reference node (retrograde orbits) . 

0 

by the orbital inclination e 
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(X  , Yp, Zp) is a rotating local vertical system with X directed 
P P 

along the local gravity vector from the earth‘s center to the spacecraft in orbit. 
The triad is completed by Y . The third axis, Z , is perpendicular to the 

P \ P 
orbital plane directed northward and aligned with the spacecraft ( S / C )  momen - 
turn vector. The orbital fixed coordinates are transformed into the local 
vertical system by rotating about Z = Z 

O P  
defined by the orbital angular rate, W times orbital time, t . 

0 ’  

by the orbital angle cp , which is 

The transformation from solar to local vertical coordinates is symboli- 
cally expressed by the following sequence of rotations. 

xs - -e - X g -  
L e-  X X X 

0- P 

Y Y Y Y ys-yl- g -  e -  0 - p  

Z 
’ P  Z s-’1- -A Z g -  a Z e-----.--, Z o cp 

The environmental forces acting on the spacecraft a r e  usually given or 
calculated in the local vertical coordinate system, for example, gravity acts 
along the negative X axis. However, the effect of the environmental forces 

on the spacecraft motion are usually evaluated in terms of body fixed coordi- 
nates. The body fixed system is usually chosen such that the cross products 
in inertia are zero and/or the body is ideally oriented with respect to a defined 
reference coordinate system. Hence, definition of at least two additional 
coordinate systems is necessary. 

P 

(Xr, Yr, Zr) are mission dependent reference coordinates on which 

the body axes a re  to be oriented. If the spacecraft is unperturbed, the body 
Yb, Z ) a re  identical to the reference axes. However, if the axes (Xb, 

spacecraft is perturbed from the desired reference, then a three-angle modified 
Euler transformation (type 3, 2, I) is necessary to relate the two systems. 
The modified Euler angles a re  standard airplane angles which are valid for 
small angle approximations. 

b 
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(X , Y Z ) are body fixed coordinates which are usually chosen so b b’ b 
that the cross  products in inertia are zero. The roll axis, Xb , is aligned 

with the longitudinal body axis. For spacecraft, Z is aligned with a bench- 

‘b mark perpendicular to X and Y completes the triad. For aircraft, 

completes the triad and Y is aligned with the right wing perpendicular to X 

In either case, Y is the pitch axis and Z i s  the yaw axis. For the orbital 

workshop Xb is along the longitudinal axis and positive in the direction of 

thrust application; Y is along a solar panel (right wing) , and Z is aligned 

with benchmark position 111. The side view ATM points in the negative Z 

direction (aligned with Position I) and the end view ATM points in the negative 

b 

b ’  b 

b ’  b 

b b 

b b 

b 

direction. 

In ATM mode operation it is desirable to have the workshop solar 
oriented. Hence the solar coordinates are chosen as the reference coordinates 
and the unperturbed body axes a r e  related to the reference coordinates. The 
perturbed body axes a re  then related to the reference coordinates by a modi- 
fied Euler angle transformation. 

The environmental forces in local vertical coordinates a re  related to 
the reference coordinates through the previously defined transformations in 
the orbital, equatorial, and ecliptic planes. 

TRANSFORMATIONS 

Because the ATM must be solar oriented, solar coordinates must, in 
some manner, be related to the reference coordinates. This relation depends, 
of course, on the particular OWS configuration as the side or end view ATM. 
But in any case, the transformation between the various coordinate systems, 
a s  defined in the preceding section, must be developed to find the components 
of the orbital radius vector, which are known in local vertical coordinates, in 
solar coordinates. First ,  the individual transformation matrices a re  obtained, 
and are then combined to give the transformation matrix between local vertical 
and solar coordinates. The resultant matrix is composed of nine directional 
cosines which are a function of the rotational angles. The matrices a re  denoted 
by capital letters with subscripts that indicate the coordinate systems being 
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related. For example, A means that the matrix operates on a vector in 

inertial coordinates to produce i ts  components in terms of solar coordinates. 
Vectors a re  denoted by letters with superscript bars  and with one subscript 
letter to indicate the coordinate system. A superscript tilde indicates the 
vector transpose of a conventional vector, X , as used in forming vector- 
matrix equations. Unit vectors a re  denoted by i, j, and k in the respective 
x, y, and z directions with one subscript to indicate the coordinate system. 

sl 

N 

The previously defined sequence of transformations is carried out in a 
rotation-by-rotation manner starting with solar and ending with local vertical 
coordinates : 

I .  The solar-inertial transformation is obtained by a rotation about Z, 
by the angle A : 

= A  % 
S sl 1 9 

SA 

Ch 3 
0 I 

s \  P1 Y 

ECLIPTIC 

z =z 
1 s  

2. The inertial-geocentric inertial transformation is obtained by a 
rotation about X by the angle of earth's inclination, e: 

g 

A =  
k 

0 

Ce 

-Se 

0 

Se 

Ce 

1 

3. The geocentric inertial-equatorial transformation is obtained by a 
rotation about Z by the angle of nodal regression, !G! : 

g 
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N 

X = A  % 
g ge e , 

EQUATORIAL 

CS-2 -SO 0 

A ge = ~: C: :1. 
e g  

4. The equatorial-orbital transformation is obtained by a rotation about 

z =z 

X by the angle of orbital inclination, L : e 

N P\ 
, X = A  % 

N 

X = A  % e eo o 9 

0 

A = ~  C L  0 

eo 

0 S L  

lj * 

CL 

The individual transformations a re  combined to produce the transfor - 
mation from local vertical to solar coordinates: 
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where 

A = A A A A A  
SP sl lg ge eo op 

and the superscript * represents the transposition of the matrix. 

The elements of A are obtained by substituting for the individual 
SP 

transformations and performing the indicated matrical multiplications in the 
order indicated. The result is 

- 

A =  A22 A23 

31 A33 

SP 

- 

where the directional cosines are 

All = C q  (CACQ + ShSQCe) 

+ SqSL(SASe) Y 

AI, = - Sq(CACQ + SASQCe) + C~CL(-CASQ + SACQCe) 

+ Cq SL(ShSe) Y 

A,, = - S L ( - C X S Q  +ShCQCe) + CL(SASe) 

A21 = Cq (-SACS2 + CASQCe) + S ~ C L ( S ~ S Q  + CACGCe) 

+ SVSL(CASe) > 

+ SqC L (  -ChSQ + SACQCe) 

Az2 = - S q  (-SACG + CASQCe) + Cq CL(  SASS2 + CACQCe) 

+ C q s ~ ( C h S e )  Y 
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AZ3 = - SL(SASQ + CACQCe) + CL(ChSe) 9 

A,, = Cq(-SQSe) + SqCL(-CQSe) + SqSL(Ce) Y 

(19) 
( cont’d) 

A, = Sq(SQSe) + CqCL(-CQSe) + CqSL(Ce) Y 

A33 = CQ(SLSe) + CLCe 

The directional cosines, as derived, are functions of five physically 
meaningful angles of which: (I) two a re  constant, the equatorial to ecliptic 
plane angle (e) and, once specified, the orbital inclination angle ( L ) ; 
(2)  two vary slowly with time, the seasonal position of the earth a s  it rotates 
about the sun at about one degree per  day is given by the angle h and the 
orbital precession (nodal regression) angle ( Q ) with a rate of about five 
degrees per  day depending on the orbital inclination and altitude; and (3 )  one 
varies rapidly with time, the orbital angle q which specifies the position of 
the satellite in orbit and varies a t  the orbital rate, W . These angles and 
their angular rates are given in  Table I. 0 

In examination of the directional cosines, it becomes evident that they 
a re  quasi-cyclic functions of the three time varying angles A ,  Q, and q . It 
is also evident that for one year or longer time periods the directional cosines 
will take bn all their possible values; hence, the time-of-day, time-of-year, 
launch location and the initial values of ho and Q o  are not significant factors 
in evaluating the energy requirements to overcome gravity gradient effects. 
The variation of the gravity gradient is primarily due to the change in the 
directional cosines for a fixed vehicle orientation. However, for short time 
periods, on the order of a few orbits, the variation in A and i2 is small 
enough that for practical considerations they may be treated as constants 
which have been selected to produce worst case conditions. One such selec- 
tion is A = A0 = 270 degrees for the time of winter solstice and SZ = a0 = 180 
degrees for the maximum angle condition between the orbital and ecliptic planes 
at the winter solstice. 

Substitution of h = 270 degrees and i2 = 180 degrees into the direc- 
tional cosines produces the following simplified directional cosines which a r e  
only valid for short  time periods near the time of winter solstice: 
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TABLE I. ANGLE LIMITS AND RATES 

cp = W t (rad) ; t (sec) 
0 

W 0 = (GM/R$” (rad/sec)  

A = cos(a! ) , m and D =  1 , 2 , 3  mn mn 

e = 23.45  (deg)  

0 5 L I 180 (deg) 

Q = Qo + kl t‘ (deg)  

0 5 Qo I 360 (deg)  

fz = - 9.9728 (Re/R ) 72 C O S L  (deg/day) 
0 

t‘ = time in  days 

h = ho + i t ’  

0 5 ho I 360 (deg)  

i\ = 0.98565 (deg/day) 

(deg)  
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and 

A,, = S q S ( L + e )  = S q S q  , 

A32 = C ~ S ( L  + e )  = CqS+ , 

A33 = C(L + e )  = Czl, 

In this simplified form, the directional cosines are fwctions of only 
one time varying angle ( q ) , one specified angular parameter ( L )  and one 
constant angle (e) , and can easily be evaluated without resorting to elaborate 
computer routines o r  facilities. However, the gravity gradient torques and 
the energy requirements to counteract these torques represent worst case 
conditions when calculations are based on use of the simplified directional 
cosines with 
be utilized during preliminary design work to establish maximum fuel reser,ves 
and control requirements for an OWS being acted upon by gravitational torques. 

@ = L + e = 45 degrees . Hence, the simplifying conditions can 

At this point, the transformation between local vertical and solar coor- 
dinates has been established for both the general case and the simplified fixed 
time-of-year case. The task remains, however, to relate the OWS body axes 
to a desired reference frame. A s  pointed out in the section on coordinate 
systems, the reference frame is mission dependent. Therefore, for each OWS 
operational mode or  for each configuration, a desired reference frame must be 
selected, and a transformation derived which relates the body axes to the 
reference axes. Then the components of the local radius vector, Ro , must 

be obtained in body coordinates through use of the derived transformations. 
These components are substituted into the gravity gradient torque equations 
and the gravity gradient effects evaluated for each configuration o r  operational 
mode. For example, an OWS with rigidly attached ATM must have the refer- 
ence axes solar oriented during ATM operation to view the sun and to receive 
the maximum solar energy without gimbals on the solar panels. Under ideal 
control conditions the body axes are identically aligned with the reference axes 
and for the example above, the simplified directional cosines can be used to 
evaluate the gravity gradient torques without additional transformations. 

- 
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END VIEW ATM, S0LA.R MODE 

The DWS with end view ATM, as illustrated in Figure 7, has the ATM 
fixed and viewing in the negative X -axis direction. Hence, in an ATM mode 

of operation the positive longitudinal body axis must be pointing opposite the 
sun line vector, X . This pointing requirement, however, does not place 

any constraints on either the Y - or  Z - axis. Hence, the solar axes can be 

related to the body axes by a 180-degree rotation about either the Z - or the 

Y -axis . Assuming initial alignment of the body and solar axes, a 180-degree 

rotation is made about the Z -axis to produce the desired solar orientation: 

b 

S 

b b 

S 

S 

S 

N 

X = A  % 
b bs  s 

2, = z, 

a 
wo .?;;" c A ORBITAL 

PLAN E 

FIGURE 7. END VIEW ATM, SOLAR FIXED ORIENTATION 
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where 

0 0  

Abs = ~~ -1 :] . 

Combining this transformation with the local vertical to solar trans- 
formation, equation ( 16) , gives 

The above transformation is utilized to obtain the vector components of 
the radius vector in body coordinates: 

- 
R = R i  

0 O P  

- 
R = R (-A i - A,, jb + A,, kb) 

0 o l i b  

and thus 

R = -RoAi l  , 
X 

R = - R  A21 , Y 0 

R = R A31 z 0 
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Substitution of R R and R into the gravity gradient torque equa- 
X Y  Z 

tion, (10) with the products of inertia being zero, gives 

and 

where the directional cosines (A's) are a s  defined in the section on trans- 
formations, equation (18) . For a simplified analysis at the time of winter 
soltice, the torque equations are evaluated with ho = 270 degrees and 
Q, = 180 degrees substituted into the directional cosines, equations ( 2 0 ) .  The 
following simplified equations may be utilized to obtain the gravity gradient 
torque effects on the OWS with end view ATM without resorting to computational 
facilities: 

and hence, 

T = C S2<pS$ , 
X X 

T = - C  S 2 q S 2 $  , 
Y Y 

T = - C  S2<pC$ , 
Z Z 

An indication of the energy requirements necessary to counteract the 
gravitational torques on the OWS with end view ATM in solar orientation is 
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obtained by integrating the torque equations with 'p given a s  a function of time 
and with the angle zc) being constant. The resultant momentum vector compo- 
nents a re  

H = ( -C /2W )C2qSs2C, + Hxo , 
X x o  

H = (-C /4W0) (2'p - S2'p) S2zc) + H 
Y Y YO 

Y 

H =  
Z 

(C / 2 w  )C2'pCzc) + z o  zo H 

Two cases of momentum accumulation may be entertained: (I) the 
constants of integration can be evaluated by assuming the initial values of 
momentum are  zero, and/or ( 2 )  the constants of integration can be assumed 
to be zero, in which case the initial momentum values a re  not necessarily zero. 
These cases a re  evaluated in the section on energy requirements. 

Some of the pertinent features of the solar oriented OWS with end view 
ATM are:  

I. The ATM is rigidly attached to the workshop and is not gimbaled. 
The end of the OWS is always exposed to the sun. 

2.  Solar panels a r e  perpendicular to the ATM viewing axis and once 
deployed a re  not gimbaled . Maximum solar energy is \received. 

3.  The vehicle must continuously pitch, yaw, and roll with respect to 
the local vertical to maintain i ts  fixed solar orientation. Hence maximum 
gravity gradient torques a re  encountered. A secular momentum component 
occurs about the y-axis where the difference in vehicle inertias is greatest. 

4. Torques are maximized at s2C, = 45 degrees which corresponds to 
an orbital inclination of 21.55 degrees. The X- and Z-axis torques are cyclic 
with a period one-half that of the orbit. 

5. A t  z) = 90 degrees the OWS is a t  an unstable equilibrium point for 
a symmetric vehicletthe torques are all zero). 
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S I D E V I E W  ATM, XOP MODE 

The side view ATM Workshop configuration B-I ( Fig. 8) must have 
the negative Z -axis pointing toward the sun and the Y -axis perpendicular 

to the sun line to preclude articulating the solar panels and to maximize the 
solar power received. It is also desirable to minimize the momentum required 
to maintain attitude hold while viewing the sun. One method of minimizing the 
momentum while satisfying the solar pointing requirements is to align the long- 
itudinal body axis, X, , in the orbital plane (XOP mode) . Hence, the problem 

at hand is to relate the body axes to a known coordinate system while satisfying 
these constraints. It is assumed that the body axes a r e  not misaligned from 
their desired orientation; therefore, the reference axes a re  identical to the 
body axes. 

b b 

Before the operations defining the body-reference coordinates a r e  
carried out, a common vector space must be chosen in  which to perform the 

FIGURE 8. SIDE VIEW ATM, SEMISOLAR FIXED ORIENTATION, XOP MODE 
(X -axis in  orbital plane and Z -axis opposite sunline) b b 
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necessary vector operations. Since one axis is solar oriented, solar coor- 
dinates are selected2. The vectors in local vertical coordinates a re  trans- 
formed into the solar coordinates by the previously defined directional cosine 
matrix relating the orbital, equatorial, and ecliptic planes. A s  previously 
shown in equations (17) and (18) the unit vectors in local vertical coordinates 
are 

i = A l i i s  + A,, j + A3iks , P S 

= Ai2 is + A22 j + A32 ks , 
jP S 

and 

k = A13i  + A23 j + A33kS , P S S 

when expressed as functions of solar coordinates. Now, the body-reference 
axes may be defined to satisfy the workshop orientatien requirements. 

Aligning Z with the negative sun line vector requires that b 

Aligning X in the orbital plane requires that X b b 
linear combination of i and j which define the orbital plane3. Orbital 

plane alignment requires that X be perpendicular to k and, by definition, 

to Zb . Hence, X can be expressed a s  the cross  product between the unit 
b 

vectors k and i : P S 

be expressed a s  a 

P P 

b P 

X = - (is) x (kp) ( 3 0 )  b 

2. Since one axis is to be in the orbital plane either orbital o r  local vertical 
coordinates could have been selected as a basis for body axes definition; how- 
ever, the end result is the same, although the transformation matrices would 
have been different. 

3 .  Note that the sign of Xb is not uniquely determined. Interchanging the 

cross  product defining X 

a sign change could alter the conditions under which control moment gyros 
would physically saturate. 

would have resulted in a sign change in  X b b '  Such 
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and 

Transforming k into solar coordinates and carrying out the indicated 
P operations : 

- 
X = - l is)  x ( k  ) = A33 j b P S 

- A23ks 

and 

The third reference coordinate Y 

product between the unit vectors directed along X 

right-hand triad: 

is obtained by taking the cross b 
and Zb to complete a b 

2 2 Y.2 Letting D = (A33 + A23) 

jb = (kb) x ( i  b ) = (-i S ) x ( % j s  - & k )  D s  

In vector matrix notation the transformation from solar to body coor- 
dinates for the side view ATM [equations (29)  (31) and (32) ] is 

N x = c  % b bs  s 9 (33) 

where 
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The body system is then related to the local vertical system by 

N N x = C  X = C  A % E B  % 
b bs s bs SP P bP P Y 

where 

B =  
bP 

Bll B13 

B22 B23 

B31 B32 B33 

Ail 

A21 A22 

A33 

Utilizing equation (34), the vector from the earth's center to the 
spacecraft in body coordinates is 

- 
R = R B  i + R B 2 1 j b + R B 3 i k b = R  i 

0 o li  b 0 0 O P  

Evaluating the components of gives 
0 

Z 

0 

R 

R 
- -  - B31 = - A i l  

(34) 

where 

2 2 D2 = A33 + A23 
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and the directional cosines a r e  a s  previously defined in the section on trans- 
formations, equations (19) . 

Substituting the components of into the gravity gradient torque 
0 

equation ( IO) with the products of inertia zero gives 

3p - I ) B2, = 2 c x  B21 B31 T = ~ ( 1 ~  
Y X Y 

0 

and 

as the general gravity gradient torque components in the selected body-reference 
coordinate system. Notice that the B ‘s are given in terms of five angles, 

three of which vary with time. However, valid results can be obtained by 
assuming conditions whic h eliminate two of the time-varying angles, 

mn 

For a simplified, fixed time-of-year analysis substitute h = 270 degrees 
for the time of winter solstice and SZ = 180 degrees for the maximum angle 
between the ecliptic and orbit planes intc the transformation components. The 
result is summarized in equation ( 2 0 )  and the elements of B become 

bP 

and 
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When these simplified directional cosines, equation ( 3 7 ) ,  a r e  substituted 
into equation ( 3 6 )  , 

T = C S2cpS2+ 
X X Y 

T = C S2cpCC7cI 
Y Y Y 

and 

T = C SZcpS+ 
Z z 

These equations contain only one time varying angle which is known as 
a function of the orbital angular rate,  i. e .  , cp = W t . Integrating with respect 

to time gives the following momentum components due to gravity gradient 
torques : 

0 

H =  
Y 

( - c  /2w )C2cpC$ + 
Y O  

H 
YO (39) 

and 

H = ( - C  /2W )C2cpS+ + H 
z z o  ZO 

Meaningful results about the effects of gravity gradient torques on the workshop 
and the energy requirements to maintain attitude hold can be obtained from the 
simplified torque and momentum equations. However, long period cyclic effects 
due to regression of nodes or the earth's rotation about the sun can only be 
evaluated by using torque equations as a function of three time-varying angles. 

Some of the pertinent features of the side view ATM with the long body 
axis in the orbital plane are illustrated in Figure 8 and the characteristics of 
such an orientation are: 
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I. The side view ATM is not gimbaled. 

2 .  The solar panels a r e  not gimbaled, nor are they ever shaded by the 
ATM. Hence maximum solar energy is received. 

3 .  The vehicle must continuously pitch and/or yaw a t  the orbital 
regression rate (about 6 degrees/day) and roll at the solar look angle rate 
(about 3 . 5  degrees/day) . 

4. With respect to the local vertical, the vehicle pitches and/or yaws 
continuously a t  the orbital rate, W . Thus, the torques about the Y- and 

Z-axis are cyclic, peaking at their maximum possible values twice each orbit. 
0 

5 .  The same side of the vehicle is always exposed to the sun, a factor 
to consider in designing the environmental control system. 

6. The X-axis torque is secular, but the moment coefficient is mini- 
mum for a near symmetric vehicle. 

xb ’ 7. The axes are orientated so that the axis of minimum inertia, 

is always in the orbital plane, the axis of maximum inertia, Zb , is opposite 

the sun line vector, and the axis of intermediate inertia is perpendicuLar to the 
sun line vector. Such a semi-solar fixed orientation minimizes the energy 
required for solar attitude hold. 

PERPENDICULAR TO ORBIT PLANE MODE 

The reference coordinates for the OWS in a perpendicular to orbit 
plane (POP)  mode a re  chosen so that only one degree of freedom is required 
for sun tracking on the gimbals of either the ATM or  solar panels. The gimbal 
limitation requires an OWS configuration similar to Saturn V Workshop 
configuration B-I, but with a side view ATM that gimbals in the X and Z 

plane. The operational ATM would be aligned in  the general negative Z 

direction and point toward the sun. Hence the Z -axis must lie in the plane 

defined by the sun line and the perpendicular to orbit vectors, and the Y -axis 

b b 

b 

b 

b 
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must be perpendicular to the plane so that maximum solar energy can be 
received. In a P O P  mode orientation, the longitudinal body axis, , is by 

definition perpendicular to the orbit plane and is, therefore, perpendicular to 
the local radius vector from the earth's center to the OWS, aligned with the 
orbital momentum vector. 

The OWS in POP mode orientation is in an unstable equilibrium position. 
The gravity gradient torques for a symmetric vehicle would normally be zero 
without axes misalignment. It has been assumed, however, that the OWS will 
continuously roll to limit ATM gimbal requirements. The torque about the 
X-axis will not be zero unless the vehicle is symmetric, so that the products 
of inertia of the Y- and Z-axis are equal. With axes misalignment, or under 
the influence of inflight perturbations, the gravity gradient torques tend to 
destabilize the POP mode oriented OWS. The torque components will be derived 
in general form and in simplified form using fixed time of year assumptions. 
The simplified form equations will then be integrated to give an indication of the 
energy requirements for attitude hold under the influence of gravity. 

Figure 9 indicates the pertinent features of an OWS in POP mode orien- 
tation. To view the sun, the OWS must continuously roll at the orbital angular 
rate with respect to the local vertical, and the ATM and solar panels must be 
slowly gimbaled due to orbital plane regression and seasonal changes in the 
sun's perpendicular rays upon the earth. The gimbal rate is about 3 . 5  degrees 
per day which is the time rate of change in the solar angle /3 as defined in the 
section entitled Solar Look Angles. Since the OWS is aligned with the orbital 
plane and the radius vector from earth to spacecraft, the local vertical coor- 
dinates are selected as the system in which to define the reference coordinates. 

Since X must be perpendicular to the orbital plane and hence the b X -axis, let 
P 

X = Z so that i = k 
b P b P 

The Y -axis must be perpendicular to X and also to the sun line b b 
vector X 

panels directed toward the sun. Hence, Y is perpendicular to the plane 

determined by X and X . A unit vector in the direction* of Y is defined 

so that only one degree of freedom is required to maintain the solar 
S 

b 

b S b 
by the vector cross  product, 

4. The sign of j is not uniquely determined b 
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FIGURE 9. POP MODE OWS WITH GIMBALED 
ATM AND SOLAR PANELS 
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where i 

directional cosines, equations ( 17), as 

in local vertical coordinates is given in terms of previously defined 
S 

i = A l i i  + Ai, j + A13kp 
S P P 

Performing the indicated vector operations and letting E = (A% + A:2F gives 

The third reference coordinate, Zb , is defined by completing a right- 
hand triad, hence 

Arranging equations (40), ( 42) , and (43) in  vector-matrix form, the 
transformation from reference coordinates ( unperturbed body axes) to the local 
vertical system is given by 

N x =  b 

- 
0 0 I 

-A,, 
E A,, 0 E ( 44) 

The components of the orbital radius vector a re  determined by utilizing 
equation (44) , 
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Hence 

R = O  ) 

X 

R Y =-R(+) 0 ) 

and 

R Z = - - R ( % )  0 . 

Substitution of equation (45) into the gravity gradient torque equation 
( I O )  ) where the products of inertia are zero, gives the POP mode torque 
equations 

T = O  
Y 2 

and 

T = O  
Z 

Using the simplified directional cosine values listed in equation ( 2 0 )  
gives A,, = SqC$ and A,, = CqCzl, so that equations (46) become 

Tx = C S ( 2 q )  
X 3 

T = O  
Y 

and 

( 47) 

T = O  
z 
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Integrating equations (47) with respect to time gives the momentum, 
i.e.,  cp = W t , dt = dcp/W components, 

0 0 ,  

H = (-C /2W)C(2q)  + Hxo 
X x o  

H = H  
Y YO 

Y (48) 

and 

H = H  
Z 20 

I€ the OWS is symmetric, the moments of inertia I and I are identical 
Z Y 

so that the torque and momentum about the X-axis is also zero. Hence, a 
symmetric vehicle in the POP mode orientation is a t  an unstable equilibrium 
position with the torques about all axes being zero. Any perturbation o r  axes 
misalignment tends to force the vehicle from this  orientation, which will be 
further analyzed in  the next section, Body Axes Misalignment. 

The factors which were pertinent in  selecting the POP mode reference 
coordinates (Fig.  9) and the characteristics of an OWS in such an orientation 
are listed below: 

I. By continuously rolling about the X -axis with respect to the local b 
vertical (360 degrees per orbit) only one degree of gimbal freedom is required 
on both the ATM and solar panels to track the sun. 

2. By performing a 180-degree turn about the Z -axis each time the 

orbital and ecliptic planes coincide (about 304ay  intervals) 
on the ATM and solar panels can be &ther restricted to 16.5 degrees to 90 
degrees on the ATM and 0 degree to 7 3 . 5  degrees on the solar panels for an 
orbital inclination of 50 degrees. Such a manuever would also prevent shadow- 
ing of the ATM by the workshop. 

b 
the gimbal limits 

3. Since the vehicle is in an unstable equilibrium position, the effects 
of gravity gradient torques and the energy requirements are minimized. 

4. Because the vehicle is broadside to its velocity vector, the aero- 
dynamic torques will be maximized. 
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5 .  The vehicle inertial properties will continuously change as the ATM 
is gimbaled. 

6.  Body axes misalignment from either the reference coordinates or  the 
principal axes cause a large increase in the energy requirements due to increased 
gravity gradient torque effects. 

7. Gimbal angle control and command for both the ATM and solar panels 
could come from the same source. 

BODY AXES MISALIGNMENT 

Two cases of body axes misalignment will be entertained: Case I, body 
axes misaligned from the principal axes in which case the products of inertia 
are not zero by definition of such a misalignment; Case 2, body axes misaligned 
from the reference axes where to simplify the necessary mathematical manipu- 
lations the products of inertia a r e  assumed to be zero. In each case the same 
coordinate transformation is utilized, but the Euler angle symbols a re  different 
to avoid possible confusion between the two cases. Both cases, however, have 
similar first order effects on torque and momentum. Finally, the gravity 
gradient torques due to axes misalignment a r e  calculated for a satellite in a 
gravity gradient stable mode, a s  well a s  for the POP mode case. 

Case 1 

Assuming that the body axes a re  misaligned from the principal axes 
requires development of an inertia dyadic transformation to relate the moments 
and products of inertia of the body axes to the moments of inertia of the princi- 
pal axes in which the products of inertia are zero. This operation will give 
equations by which the products of inertia can be eliminated from the gravity 
gradient torque equations and the torque expressed a s  a function of the mis- 
alignment angles and the moments of inertia which are known in the principal 
axes system. First, the transformation from body to principal axes will be 
defined; then the tensor transformation will be derived. Finally, the gravity 
gradient torque equations will be evaluated and the momentum equations obtained 
by integration of the torque equations. Since the misalignment angles a r e  
assumed to be small, small angle approximations and linearization by neglect- 
ing second and higher order terms are utilized for simplification. 
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The transformation from principal axis (denoted by the subscript, a)  
to body axis is obtained through a modified Euler, type 3-2-1, transformation. 
Initially, the axes are assumed to be aligned. First rotate about Z1 by the 

angle a! then about the transformed Y'-axis by the angle a! and finally 

about the twice-transformed X"-axis by the angle a! to obtain 
z '  Y 

X 

N N 

X '  = A3xa ) A3 = 

N % = Ai';;" 9 

-a! I 
Z 

0 0 - 

- 
I 0 

0 I 

a! 0 
Y 

a 0  

Z 1 -1 

0 

I z =Z' 

0 

I 

-a! 
X 

J 

-a! 

O Y 1 )  I 

0 

I 

Combining the three rotational matrices gives 

N 

Ai';;'' = A,A2A3ga = A % % =  ba a 

X 
\b Z" 

( 49) 
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where 

and 

The inertia dyadic transformation i s  derived from basic principles by 
starting with the angular momentum of a body composed of a system of particles 
about the center of mass, 

- 
H = (s.) X 

1 

where 

- 
+ yijb + z k i b  r = = x i  

i i b  

th is a vector to the i mass particle expressed in body coordinates. The 
velocity % can be expressed in the rotating body frame a s  

i 

L _. 

r = r + G x F  i bi i 

where 

- w = w i  + w j  + w k  x b  Y b  z b  

52) 

is the angular velocity of the body axes relative to inertial space expressed in 
body coordinates, and is the velocity of the mass relative to the body 

bi 
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coordinates. Substituting equation ( 52) into the expression for angular momen- 
tum, equation (51), and expanding gives 

and 

th 
The first term represents the relative angular momentum of the i 
particle with respect to the body axes. Physically, the first term is due to 
moving parts such as flywheels or control moment gyros, but for a rigid body 
r. is fixed with respect to the body axis; hence, the f i rs t  term is zero for this 

derivation. The second term is a vector triple product which can be expanded 
to produce, 

mass  

1 

Carrying out the indicated vector operations and substituting the previously 
defined moment and product of inertia terms, equation (8)  : 

T I = @  w - I  w - I  w ) i  + ( - I  w + I  w - I  w ) j b  
x x x  x y y  x z z  b Y x x  Y Y Y  Y Z Z  

- I  w - I  w + I  w + (  z x x  ZY Y zz z)kb ( 54) 

The angular momentum can be written in a more compact form- by using 
vector -matrix notation: 

N N N  

H = I w  (55) 

where 
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N 

H = col(H Hy, Hz) 
XY 

N w = col(w w xy y' "z) 

and 

N 

I =  

- 
I -I xx XY 

-I I 
3Tx YY 

-I -I 
zx ZY 

Y 

, 

- 
-I xz 

-I 
YZ 

- zz I 

The square matrix I is called the inertia matrix of a body. The prop- 
erties of its elements under a coordinate transformation are such that they 
qualify as a second order tensor. Hence, the inertia matrix is also called the 
inertia tensor of a body. A s  derived, the equation for H is valid for any rigid 
body with an arbitrary reference point on the body which serves as origin for 
the body axes. For the case a t  hand, assume that the body axes a re  not prin- 
cipal axes, the elements of I are unknown, and the products of inertia are not 
necessarily zero. Further assume that the moments of inertia are known in 
principal coordinates where, by definition, the products a r e  zero for such a 
reference frame. 

A s  previously derived, the transformation between body and principal 
axes, equation (49) , is given by 

N x = A  2 b ba a 
N x = AEa% a and 

Therefore, the angular momentum can be transformed into the principal 
coordinated by 
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But in principal coordinates the angular momentum is 

By equating coefficients, equations (56) and (57), 

so that 

is the tensor transformation between the inertia dyadics. 

In principal coordinates the elements of I a r e  known such that a 

0 

N 

a 

Substituting into the tensor transformation, carrying out the matric multipli- 
cations and equating elements produces nine equations from which the moments 
and products of inertia in body axes are determined: 

45 



and 

Therefore 

I = I  I = I = -a! ( I  -Ix) 
xx X ’ X Y  3Tx Z Y  

I = I  I = I  = - a ( I  - Iz)  
YY Y ’ xz zx Y X  

Y 

and 

= - @  x z  ( I  - Iy )  
I = I z  , I = I  

ZZ YZ ZY 

The equations above a r e  substituted into the gravity gradient torque equation 
( 10) to eliminate the product of inertia terms: 

I a R R  z z x  T X = 3p/R5{(IZ 0 -Iy)[ R Y Z  R - a! x (Ri - R ~ ) ]  - (Iy - x) 

T Y = 3p/R5{(Ix 0 -Iz>[. z x  R - a !  y ( R 2 - R i ) ]  x - ( I z -  I Y ) a ! R R  X X Y  

and 
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( cont'd) 

By utilizing definitions, equations ( 11) , the body-principal axes misalignment 
torque equations can be written a s  

- C a R R  + C a R R  
X z z z x  Y Y Y X  

- C r r R R  + C a R R  x x x y  

and 

x x x z  * T Z = 2 / R z \  C z [ x y - a z p ; - R : ) ]  R R  - C a R R  Y Y Y Z  + C a R R  

These equations can be utilized to evaluate the effects of body and principal 
axes misalignment for any vehicle orientation. For each specific vehicle 
orientation the components of the local radius vector (R R and R ) must xy yy Z 

be obtained in body coordinates through use of the previously defined directional 
cosines. The misalignment angles ( a  a and a ) a r e  free parameters 

whose values a re  small (equal or less than 15 degrees); hence,second and 
higher order misalignment terms have been deleted in deriving equation (62) . 

xy y' Z 

The radius vector components for three OWS attitude hold modes a re  
listed in Table I1 a s  functions of directional cosines whose values a re  given in 
equations ( 19) on transformations. However, the directional cosines a r e  
quasi-cyclic functions of three time varying angles and a re  not suitable for 
hand calculations. Valid trends can be obtained for a few orbital periods by 
using a fixed time-of-year analysis and by neglecting orbital regression. The 

maximum angle between the orbit and ecliptic planes (a = 180 degrees) are 
listed in Table III. .Using these simplified components the POP mode gravity 
gradient torque equations with body-principal axes misalignment a re  

, radius vector components at the time-of-winter solstice (A= 270 degrees) with 
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TABLE II. RADIUS VECTOR COMPONENTS FOR THREE OWS MODES 
AS FUNCTIONS OF DIRECTIONAL COSINES 

R 
X 

R 
Y 

SIDE - R  All 0 (Ai3  + A213)1/2 

- R  0 Al l  END - R A21 0 0 A3i 

- RoA12 
0 POP 

TABLE III. SIMPLIFIED RADIUS VECTOR COMPONENTS 
WITH h = 270 DEGREES AND = 180 DEGREES 

R 
X 

R 
Y z R \ 

SIDE 

END 

POP 0 

T = Cx(S2rp + 2 ~ r ~ C 2 q )  , 
X 

T = C 20 S2cp + C (Y S2rp , Y Y Y  z z  
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and 

The POP mode torque, equations (63) , can be integrated to give 

H = ( C  /2W ) ( - C 2 q  + 2 ( ~  S 2 q )  + H 
X x o  X xo ) 

H = ((x C /2WO)(2q - S 2 q )  - ((x C /2W)C2q  + H 2 

( 64) YO z z  0 Y Y Y  

and 

where Ho are the constants of integration. 

The simplified gravity gradient torque and momentum equations for the 
side and end view configurations under body-principal axes misalignment can 
be obtained by substitution of the simplified radius vector components for each 
configuration. However, the equations are more complex and difficult to 
integrate than those for the POP mode case. 

Case 2 
Assuming that the body axes are misaligned from the reference axes 

also requires use of the modified ,Euler transformation developed for Case 1 
where the angle symbols have been changed. The body axes are carried into 
the reference axes by first rolling about the %-axis by the angle 6 

by pitching about the transformed Y -axis by the angle 6 , and finally by 

yawing about the twice transformed Z -axis by the angle 6 . The resultant 

transformation using small  angle approximations and linearization is resum- 
marized by 

then x '  

b Y 
b Z 

N 

X = A  2 b br r 
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where 

i 

Z L: Y 

-6 
Z 

I 

6 
X 

-6 6~ 

i 

In the previous sections where specific vehicle orientations were 
evaluated, the body axes were assumed to be ideally aligned with the reference 
axes. In the present case the body-reference axes a re  assumed to be misaligned 
and the transformation is utilized as an operator on the R R , and R 

components which a r e  assumed to be obtainable in the reference fram.e. Let 
Xb , Yb , and Z 

gradient torque equations: 

x y  Y Z 

be the local radius vector components a s  used in the gravity b 

X = R  - 6 R  + 6 R  
b X Z Y  Y Z  

Y 

= 6 R  + R  - b R  
yb z x  Y x z  

and 

Z b =  - 6 R  + 6 R  + R Z  
Y X  X Y  

Assuming that the products of inertia a r e  zero,the gravity gradient torque 
equation ( 10) , for  body - reference axes misalignment using equations (66) 
are 

- 6x(Ri -R;) + GZRZRx - 6 R R ] ) 

X Y Y X  

- R i ) + d R R  - 6 R R ]  ) 

Y X X Y  Z Z Y  
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and 

T = (2/R2)C [R R - 6  ( R 2 - R 2 )  + 6 R R  - 6 R R ]  (67) 
( c ont ‘d) 

x x z  Z o z x y  z y  x Y Y Z  

where second order misalignment terms are  dropped. 

These body-reference equations are very similar to the body-principal 
axes misalignment equations. With the aid of C + C + Cz = 0 , equations 

(62) can be rewritten so that the components of equations (67) appear as terms. 
However, two additional terms a re  also produced that represent cross  coupling 
between each axis for the body-principal misalignment case. For a vehicle that 
is near symmetric about one axis,the cross coupling terms are  zero for several 
selected orientations. In particular the gravity gradient stable mode in which 
case the body-reference and body-principal axes misalignment equations a r e  
identical, a s  will be shown, and the POP mode for a symmetric vehicle. 

X Y  

For a nonsymmetric vehicle the POP mode radius vector components 
from Table I11 are substituted into equations ( 67) to produce 

Tx = Cx(S2q + 26 C 2 q )  
X 

T = C ( 2 6  S2q - 6zS2q) , 
Y Y Y  

and 

T Z = C z ( -  2SZC2q + 6 Y 529)  

The similarity between equations (68) and (63) can readily be seen. 
For a symmetric vehicle C = 0 and C = - C in which case equations (68) 

and (63) a r e  identical. Hence for a symmetric vehicle in P O P  mode orientation 
the effect of body-principal and body-reference axes misalignment is identical. 

X Y Z 

The momentum equations for  body-reference axes misalignment a re  
obtained by integrating equations (68) with respect to cp = W t : 

0 

5 1  



xo 
Hx = (Cx/2W0) (-C2q + 26 S 2 q )  + H 

X 

H = (Cy/2W0) [ay( 250 - Sap)  + dZC2cp] + H Y YO 
’ 

and 

These equations are evaluated using the side view ATM configuration param- 
eters and a comparison made between the body-principal and body-reference 
misalignment effects in the section on energy requirements. 

To further illustrate the similarity of axes misalignment effects due to 
body-reference misalignment, consider an OWS in a gravity gradient stable 
mode. Let the X -axis of minimum inertia be aligned with the local vertical 

and the Z -axis be aligned with the orbital spin vector. A right-hand triad is 

completed by the Y -axis which is aligned with the velocity vector. In this 

case the body axes are identically aligned with the local vertical coordinate 
system (X Yp) Zp) ) and the components of the local vertical vector a re  

R = R R = 0 , and R = 0 . These values are substituted into the general 

gravity gradient torque equation (10) to get 

b 

b 

b 

P’ 

x 0 ’  y Z 

T = O  
X 

31.1 T = T I  
y R x z ’  

0 

and 

-31.1 T = S I  
z Ro 3Tx 

These torques are due only to product of inertia terms and a re  zero if the body 
axes are also principal axes. During Case I, equations (61), it was shown that 
the product of inertia terms could be replaced by principal moments of inertia 
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and angular misalignments, 

I = - a !  (I - I )  
YZ x z  Y 

I = - a !  (I  - Iz) 
xz  Y X  

that is 

> 

9 

and 

I = - a ! ( I  -Ix) 
F Z Y  

Utilizing these relations , the gravity gradient torque components , equations 
(70),  become 

T = O  
X 

T = ~ ( 1 ~  -3P - IZ)a = -2C Q! 
Y Y Y  0 Y 

and 

The results are verified by assuming that the body axes are misaligned from 
the principal axes by an infinitesimal rotation. The local radius vector com- 
ponents are substituted into equations (62) derived for Case i, producing the 
same torque components as given above. 

Finally, let the body axes be misaligned from the reference axes. 
Utilizing the torque equations ( 67) developed for body-reference misalignment 
(Case 2) and substituting for the components of the local radius vector produces 

T = O  9 ( 73) 
X 
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T = F ( I ~ - I ~ ) G  -31.1 = - 2 C  6 , 
Y Y Y  0 Y 

and 
( 73) 

(cont'd) 

- Ix) 6z = 2 c  6 T Z = TUy z z  
3P 

0 

These components are the same as those of the previous case, equations 
( 7 2 ) ,  if the &angles a re  set equal to the a-angles. Hence, in a gravity 
gradient stable mode the effects of body-reference and body-principal misalign- 
ments a r e  identical for small angle displacements. The torques due to select- 
ing body axes that are not principal axes a re  also identical to those produced 
by axes misalignments. The equivalent misalignment angles can be determined 
by using equations (61). 

SOLAR LOOK ANGLES 

Often it is desirable to examine the variation i n  angles which describe 
an object's position with respect to a given coordinate system or  the OWS's 
body axes. For example if the OWS is in POP mode orientation it is necessary 
to examine the angle between the longitudinal body axis and the sun line vector 
to determine the angular limits and rates required on the ATM gimbal for sun 
tracking. Or ,  if an onboard experiment can be gimbaled with respect to the 
OWS, it is desirable to establish the gimbal angles and angular rates between 
the OWS body and experiment reference axes. Such angles are commonly 
referred to a s  "look" angles, which usually represent directional ccsine angles 
and can be derived by taking the scalar (dot) product between the vectors 
involved. In most cases, the scalar product will be between vectors that are 
known in different reference frames, hence the previously defined transforma- 
tions can be utilized to obtain the vector components in a common vector space 
before performing the necessary vector operations. 

The angle, z,b , between the ecliptic and orbital planes can be obtained 
by first defining vector perpendiculars to both the planes, and then taking the 
dot product between the defined vectors. Let c' and 
lar to the ecliptic and orbital planes, respectively. From the previously 
defined coordinate systems, E = k and 6 = k = k . Using the directional 

be vectors perpendicu- 

S O P  
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cosine matrix in equations ( 17) to obtain the components 
dinates, 

0 = k = Ai, is + A,, j + 'A3, k P S S 

Taking the dot product defines 

- - 
cos# = c o = A,, = CQSLSe + C LCe 

of 0 in solar coor- 

( 75) 

when using the simplified directional cosines of equations (20) with = 180 
degrees, 
The variation of $ as a function of orbital time is shown in Figure I O .  Its 

# = L + e , its maximum possible value which is depicted in Figure 5. 
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period is about 70 days for an inclination of 50 degrees. This period is the 
same as the orbital regression period which rate is shown in Figure 11 as a 
function of orbital inclination. 
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FIGURE 11. ORBITAL REGRESSION RATE VERSUS INCLINATION 

The angle ( y) between the longitudinal body axis ( the orbital spin 
vector) of the OWS in POP mode orientation and the sun line can be obtained 
by first defining the sun line vector S and then dotting s' with the X -axis 

for the POP mode configuration. Using the coordinate systems defined in 
equations (28), and directional cosines, s = i and 

b 

- 
s '  

- % = ib = k = k = A,,i + A23j + As3ks P 0 S S 

Taking the dot product yields 
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cosy = S $$ = A,, = -SL(-CASQ + SACQCe) + C ~ S h s e  . (76) 

The projection of the sun line vector upon the orbital plane defines an 
angle p which is often referred to as the solar look angle. Since any vector 
in the orbital plane is always 90 degrees from the perpendicular to the orbital 
plane the solar look angle can be expressed as a function of y from the relation 
y = /3 + 90 degrees . Substituting this relation for y gives 

cosy = cos@ + 90 degrees) = - si@ 

Therefore, 

0 = sin" (Ais) 

and 

( 77) 

The solar look angle is plotted in Figure 12 for a 270-n.mi. orbit at 
an  inclination of 28 degrees. Over a one-year interval p is repetitive with a 
period of about 45 days and an angular rate of about 2.6 degrees per day. The 
zero values of p 
the orbit and ecliptic planes. The intersection of the p and E curves repre- 
sent times when the sun is on the line of nodes between the orbit and equatorial 
planes. The magnitude of p 
E f L , where E is defined by the projection of the sun line vector upon the 
equatorial plane and is indicative of the seasonal time of year. 

indicate times when the sun is on the line of nodes between 

is within an envelope determined by the angle 

The angle E + 90 degrees is defined by the dot product between the 
sun line vector s' and a vector e' perpendicular to the equatorial plane. Using 
the previously defined transformations, the vectors are obtained in solar 
coordinates as 

- s = i  
S 

and 

e' = k = SASeis e S 
+ CASej + Ceks 

( 79) 
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FIGURE 12. SOLAR LOOK ANGLE AS A FUNCTION OF 
THE EARTH'S INERTIAL POSITION 

Taking the scalar product yields 

cos( E + 90 degrees) = - sinE = SXSe 

and 

The angle E a s  well as E f L is superimposed on Figure 12 along 
with p . For the special equatorial orbit case with L = 0 the solar look angle 
is identical to E . It is convenient to show plots of p and E with time start-  
ing a t  the vernal equinox. However, the actual initial value of p 
mined by both the time of year, specified by ho , and the time of day of orbital 
injection, specified by Go . For p to attain its maximum value at the time of 

is deter- 

58 



winter solstice (&= 270 degrees) requires that Q0 = 180 degrees. In this 
case p(max) = 73.5 degrees for L = 50 degrees as shown in Figure 13. 

Summer Autum6ol 
Soitice Equinox 

I 
60 doyr 4 I 

Vernol 
Equinox 

I 
I 

. . .  . ,  

. . . . . . . 

60 120 180 240 300 360 

Approximote Days From Winter Soltice Lounch With Lo = 270 degree And Po = 180 degree 

E+!% 
degree 

E 

E.50 
degree 

FIGURE 13. SOLAR LOOK ANGLE AS A FUNCTION OF 
TIME AFTER LAUNCH 

The solar angle has a period of 60 days and a rate of about 3 . 3  degrees per 
day. Figure 14 represents p for  a polar orbit case with L = 90 degrees . 
A s  pointed out in the section on coordinate systems, many authorities specify 
the earth's position on the celestial sphere by h + 180 degrees, in which case 
a sign change is introduced in both p and E . 

A rather interesting orbit with respect to the sun line results by select- 
ing the orbital inclination such that the orbital regression rate is equal to the 
earth's rotational rate about the sun. Such a near polar orbit is called a sun 
synchronous orbit. The orbit precesses such that the orbital plane is relatively 
constant when referenced to the ecliptic plane; hence, excursions in the solar 
look angle a re  small over an extended period of time. A spacecraft in sun 
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Mar 21 
Approximate Days From Equinox (hdegrec) 

FIGURE 14. SOLAR LOOK ANGLE, L = 90 DEGREES 

synchronous orbit would have several apparent advantages as minimization of 
the energy required to maintain a specified attitude orientation and the hard- 
ware required to point various experimental modules a s  the ATM or  an earth 
resource module. The earth's rotation of about 15 degrees per hour would 
allow total ground coverage from a sun synchronous satellite in about two weeks. 

The nodal regression rate plotted in Figure I1  is given by 

(81) a = - 9. 9728(Re/Ro) % cos L (degrees per day) 

Solving for the orbital inclination and setting b = h = 0.98565 degree per  day 
gives 
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0.98565 

I, = cos-i ~- 9.9728 (Re/Ro) 

For an orbital altitude of 270 n.mi. ,  R = (R + 270) n.mi. where 
0 e 

R = 3444 n.mi. is the earth 's  radius, the orbital inclination for a sun syn- 

chronous orbit is calculated to be 97.2 degrees. A t  this inclination the orbit 
precesses in phase with the earth 's  movement about the sun. Launch condi- 
tions are selected to produce the initial values of I;lo and A. , and hence the 
orbit and some relatively constant magnitude for the solar look angle. 

e 

The solar look angle for three initial values of I;lo is shown in Figure 
15 as a function of the earth 's  position about the sun. Launch at the vernal 

Approximote Days From Vernal Equinox, h (degree) 

FIGURE 15. SOLAR LOOK ANGLE FOR SUN SYNCHRONOUS ORBIT, 
L = 97.2 DEGREES 
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equinox with a0 = 0 produces on orbit with dark/light cycles, the orbital plane 
contains the sun vector. Utilizing this orbit the OWS with side view ATM couid 
operate in POP mode and view the sun without requiring gimbals on either the 
ATM or  on the solar panels, hence minimizing both energy and hardware 
requirements. On the other extreme, launch at the vernal equinox with 
Q0 = 90 degrees produces an all-light orbit, the orbit plane is almost perpen- 
dicular to the sun vector. An OWS with side view ATM could operate in a gravity 
gradient stable mode, an earth resources module could view the earth obtaining 
total ground coverage over a few-day period, maximum solar power could be 
received and the sun could be observed continuously, all without requiring large 
angular degrees" of freedom or module gimbals. 

Additional angles of interest can be derived. However, most look angles 
are either mission dependent or dependent upon the mounting of an experiment 
with respect to the OWS body axes, in which cases additional transformations 
may be necessary to relate the coordinates. 

E N E R G Y  R E Q U I R E M E N T S  

In this section, the energy requirements necessary for attitude hold 
against gravity gradient torques are calculated for the previously selected 
orientations. The torque and momentum vector components are plotted over 
a one-orbit time interval as a function of the orbital angular position. Then the 
total momentum, the square root of the sum of the components squared, is 
plotted and related to fuel weight and the number of control moment gyros a s  
defined for use on the ATM. For quick fuel weight estimations graphical 
methods are suggested for relating angular misalignments from the local 
vertical to momentum and momentum to fuel weight. Since much of the analysis 
contained in this report was done to support the "Early Saturn V Workshop" 
study conducted by MSFC May 15, 1968, the spacecraft vehicle data are taken to 
reflect the OWS-B physical parameters and orbital data. A representative pic- 
ture of OWS-B is shown in Figure 16 with the side view ATM. The end view 
ATM configuration is obtained by rotating the ATM 90 degrees about the Y-axis 
such that the ATM points in negative X-axis direction instead of along the 
negative Z -axis. 

The vehicle data shown in Table IV were obtained from a memo dated 
January 9, 1968, R-P&VE-AAD, lfSaturn V Workshop - Configuration 
B-1. I t  The numerical values shown are for a dry launch workshop with light 
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TABLE IV. VEHICLE PARAMETERS, OWS CONF, B 
~- 

Parameter 

X 
I 

I 

I 

I - I  

I - I  

Y 

z 

Z Y  

x z  

I - I  
Y X  

m 
3/2 W 2  

C 

C 

0 

X 

Y 

z 

x o  

C 

c / 2 w  

c / 2 w  

c /2w 
Y O  

z o  

0 
W 

e 
R 

Altitude 
R 

T ( orbit) 

e 

0 

GM =/J 

Side ATM 

0 . 6 5 1 4 ~  I O 6  

6.1729 x I O !  

6.3400 x I O 6  

0.1671 x I O 6  

-5.6886 x I O 6  

5.5215 x I O 6  

53 513 
I. 8382 x I O m 6  

.O .  3072 

-10.4568 

10.1496 

138.8 

-4723.0 

4584.3 

I. 107 x 1 0 - ~  

6.3768 x I O 6  

0 . 5 0 0 5 ~  I O 6  
6.8773 x I O 6  

56 73 
3.986 x ioi4 

End ATM 

0.5396 x I O 6  

6 . 2 1 9 4 ~  I O 6  

6.3418 x I O 6  

0 . 1 2 2 4 ~  10' 

-5.8022 x I O 6  

5.6798 

53 513 
I. 8382 x 

0.2250 

-10.6656 

10.4406 

101.6 

-4817.3 

4715.7 

I. 107 x 1 0 - ~  

6.3768 x I O 6  

(270 n. mi.  ) 
6.8773 x I O 6  

56 73 
3.986 x 1014 

Units 

kg-m2 

kg-m2 

kg-m2 

kg-m2 

kg-m2 

kg-m2 

kg 
sec-2 

N -m 

N-m 

N-m 

N-m-s 

N-m-s 

N-m-s 

S 

m 

m 
m 

m3/s2 
S 
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X 

* SUBSEQUENT CONFIGURATION Z 
STUDY DELETED SOLAR CELL 
ARRAY ON ATM. 

X 

TO SUN 

FIGURE 16. WORKSHOP CONFIGURATION B, SIDE VIEW ATM 

CSM (Command Service Module). Two of the basic orientations for the two 
configurations a re  the side viewing ATM shown in Figure 8 with the -Z-axis 
pointing toward the sun, and the end viewing ATM shown in Figure 7 with the 
X-axis pointing toward the sun. A s  used in this study the X-, Y-, and 
Z-axes a r e  denoted a s  the roll, pitch, and yaw axes, respectively. In addition, 
both the light and heavy CSM cases were analyzed. The vehicle parameters 
and numerical results a re  shown only for the light CSM case which required 
more energy to maintain a specified attitude, because of the greater differences 
in the moments of inertia. The desired orbit i s  circular a t  270 n.mi. altitude 
with a preferred inclination of 50 degrees, which corresponds to an angle, I )  , 
of 73.5 degrees between the orbit and ecliptic plane at winter solstice. 

Various environmental forces act on the orbiting spacecraft, with gravity 
gradient producing the major disturbance. Unless the OWS is in a gravity 
gradient stable mode some form of energy must be continuously applied to 
counteract the gravity gradient torques and maintain the desired orientation. 
This energy may be in the form of fuel which is expelled through a reaction 
jet control system (RCS) , a spinning gyroscopic device such a s  a control 
moment gyro (CMG) , reaction wheel or fluid flywheel. In the first case, the 
RCS motor produces a force, F , which acts through a lever arm, L , to 
produce a torque, T . By definition the time rate of change in momentum is 
equal to torque, hence 
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T = dH/dt ( 83) 

Integrating both sides with respect to time gives the angular impulse which is 
identical to the momentum accumulated over the time interval of integration, 
A \ :  

H = J T d t  = J L F d t  = L F A t ,  ( 84) 

The time interval A \  represents the time that the RCS motors were thrusting. 

The fuel weight, W, is given by 

W = h .A  5 3  ( 85) 

where m is the rate at which fuel is burned in pounds per  second. For chemi- 
cal propellants, the performance of a fuel is rated by the fuel's specific impulse 

which is defined as the thrust of a pound of propellant multiplied by the (Isp) 
number of seconds required to burn it : 

I = FAt /Am = F/m ( 86) 
SP 

The time of burn from equation (84) and the fuel burn rate from equation (86) 
are substituted in equation (85) to obtain 

W = H/I L 
SP 

Since I is in units of "seconds" and H as used in this report is in 
SP 

rrN-m-stf then if L is given in "feet" a conversion factor must be used to obtain 
W in ffpounds. If That factor is 0.7375 ft-lb/N-m, which gives 

W(1b) = 0.7375H(N-m-s)/1 (s) L(ft) 
SP 
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Equation ( 88) is plotted in Figure 17 for I = 220( s) , a typical value; and 

L = 10 f t  , the approximate radius of the S-IVB stage. Once the momentum 
due to gravity gradient is obtained, either Figure 17 or equation ( 88) is utilized 
to obtain the fuel requirements for attitude hold against gravity gradient torques. 
The fuel weight, however, becomes excessive for long lifetime missions. For 
such missions, it is desirable to utilize in some manner the natural environ- 
mental forces in conjunction with a momentum interchange device for space- 
craft attitude control. 

SP 

Reaction wheels, CMG's and fluid flywheels are gyroscopic devices 
which convert electrical power into control torque. Both the reaction wheel 
and fluid flywheel control are based on the principle of reaction torque. By 
accelerating the wheel or fluid a reaction torque is generated on the vehicle. 
In addition, a secondary torque is generated by the angular momentum of the 
device. In either case the device is hard mounted to the vehicle; hence, momen- 
tum cannot be interchanged with the environmental forces. 

P 
2 

0 

.- 
-E 

2 4 6 8 10 12 14 16 

Momentum Por Orbit, IHI (103-N-ms) ' 

FIGURE 17. FUEL WEIGHT VERSUS MOMENTUM 
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CMG's are mounted on gimbals and have momentum interchange capa- 
bility. The CMG rotor runs at a constant spin rate, providing a constant angu- 
lar momentum vector parallel to the vehicle angular momentum vector under 
zero torque conditions. Control torques are obtained when the gimbals are 
deflected to some angle, causing the CMG rotor to precess and change the 
CMG's momentum vector. The time rate of change in the momentum vector 
produces a control torque. Once the gimbals reach their physical limits the 
CMG can no longer produce control torques and must be desaturated, which 
means that the momentum added to the system by the CMG's must be removed. 
One method of CMG desaturation is to use RCS in which case fuel weight may 
pose a problem for long lifetime missions. A more practical method of CMG 
desaturation is to interchange momentum with the spacecraft's natural environ- 
mental forces. Such an interchange requires that the attitude pointing require- 
ments be relaxed during the desaturation period; however, the total energy 
requirements for long lifetime missions can be minimized. For example, if 
the solar pointing requirements for an OWS in an ATM mode of operation can be 
relaxed during the dark one-half orbit, then gravity gradient torques can be 
utilized for desaturation. CMG's with gravity gradient desaturation a r e  planned 
for use on the first OWS with an operational ATM. A system of three CMG's 
each with double gimbals will provide attitude control. The control logic for 
CMG gimbal control and desaturation is rather complex and is outside the scope 
of this report, but the characteristics of a single CMG a r e  given i n  Table V. 
Under ideal control without physical gimbal limitations a system of three such 
CMG's could produce a maximum of about 480 ft-lb (645 N-m) torque and 
6000 ft-lb-s (8100 N-m-s) momentum. A s  a reference value for accumulated 
momentum, the saturation value of 8100 N-m-s has been superimposed on the 
total momentum-versus -orbital position graphs contained in this report. In 
practice, the CMG's would be desaturated long before they approached their 
saturation value. 

For preliminary design purposes it is desirable to obkin a quick 
evaluation of the magnitude of the gravity torques acting on the orbiting vehicle 
so that the control system can be "sized." Once the environmental torques 
and momentum are calculated, the necessary fuel weight and/or number of 
CMG's for attitude pointing control can be estimated. The equations developed 
in this report  ean be readily utilized for "quick-look" analysis and preliminary 
design purposes. 

The torque and momentum component equations for the attitude hold 
modes considered in this report are summarized below for a winter solstice 
launch holding the orbital regression angle and the earth's position about the 
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TABLE v. SINGLE CMG CHARACTERISTICS~ 

Characteris tic 

Rotor Diameter (0.56 m) 

Rotor Weight (67 kg) 

Rotor Speed 

Rotor Spin Up Time 

Rotor Stop Time 

Start Power 

Run Power 

Volume ( 0.47 m3) 

Weight (190 kg) 

Threshold Torque ( 0.08 N-m) 

Maximum Torque ( 21 5 N-m) 

Threshold Gimbal Rate 

Maximum Gimbal Rate 

Angular Momentum ( 2700 N-m-s) 

Value 

22 in. 

148 lb 

7850 rpm 

7 h r  

2.25 hr  

170 W 

54 w 
16. 7 f t3  

418 lb 

0.059 ft-lb 

160 ft-lb 

0.0034 deg/s 

4.54 deg/s 

2000 ft-lb-s 

a .  Taken from "Apollo Telescope Mount Subsystem - Black Box 
Preliminary Design Review, October 30, 1967, MSFC, 
R -ASTR -BA -2 5 I - 6 7. 

sun constant ( A  = 270 degrees and = 180 degrees ) . The constants of 
integration in the momentum components have been selected such that the 
momentum is zero at time zero. The definition of equations (11) and some of 
the angle relations a re  reiterated in equations (89) for completeness; 

w = ( G M / R ~  3)?4 
0 9 

cp = W t  
0 
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C = (3W2/2)(I -Iy) , 
X 0 Z 

C = (3W2/2) (I -Iz) , Y 0 X 

and 

C = (3Wi/2) (I  - Ix) . 
Z Y 

Equations for the following attitude hold cases have been derived: 

I. End View ATM, Solar Fixed, equations (26) and (27) 

T = C SZC,S2q , 
X X 

T = - C  S2ZC,S29 
Y Y 

H X = ( Cx/2W0) S$( I - C 2 q )  2 

H = (- C /2W0) S2$( 2 9  - S29)/ 2 , 
Y Y 

and 

HZ = (- Cz/2Wo)C$( I - C 2 q )  

2. Side View ATM, Solar Fixed-XOP Mode, equations (38) and (39) 

T = C S2ZC,S2cp , 
X X 

T = C CZC,S29 
Y Y 
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T = CzS$S2q , 
Z 

H X = (C X /2WO)S2$(29 - S2q)/2 , 

Hy = (Cy/2W0) C$( i - (229) Y 

and 

H = (C /2W ) S $ ( l  - (229) 
Z z o  

3. POP Mode, Girnbaled ATM, equations (47) and (48) 

T = C S29 , 
X X 

T = O  
Y 9 

T = O  
2 

H X = (Cx/2W0) (I - (229) Y 

H = O  
Y 

and 

H = O  
Z 

4. POP Mode, Body-Principal Axes Misalignment, equations (63) and 
(64) 



T = C x ( 2 a x  C 2 q  + S 2 q )  X a 

T = c ( 2 a  S 2 q )  + c (a!  S 2 q )  Y Y Y  z z  Y 

T = - C  ( Z a !  C ' q )  - C (a!  S 2 q )  
z z  Y Y  Z Y 

H = ( C  2W ) ( 2 a x S 2 q  + 1 - C 2 q )  
X x o  Y 

( 93) 

H = (a !  C / 2 W 0 ) ( 2 q  - S 2 q )  + ( a z  C Z / 2 W O )  (1 - C 2 q )  
Y Y Y  Y 

and 

H = ( a !  C / 2 W 0 ) ( 2 q  + S 2 q )  - (01 C / 2 W 0 ) ( I  - C 2 q )  
Y Y  Z z z  

5. POP Mode, Body-Reference Axes Misalignment, equations (68) and 
(69) 
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6. Gravity Gradient Mode , Axes Misalignment, equations ( 72) 

T = O  , 
X 

T = - 2 C a  
Y Y Y  

Y 

T = 2 C a  
z z z  Y 

H = T A t  
Y Y O  

Y 

and 

H = T a t  
Z z o  

(A  t is the time interval over which momentum is evaluated. ) 
0 

For one orbit at 270 n.mi. , A t  = 5673 seconds. 
0 

Al l  the torque and momentum equations a re  functions of three multiplica- 
C o r  C contains vehicle and orbital cx’ y’ Z’ 

tive terms. The f i rs t  term, 

parameters that produce a multiplicative constant. The momentum equations 
contain the orbital angular rate and the last three sets of equations ( 93) , ( 94) , 
and (95)  contain misalignment angles all of which can be grouped into the 
multiplicative constant. The second term, sine o r  cosine functions of # , is 
a function of the orbital inclination and the angle between the ecliptic and equa- 
torial planes. Once the inclination is specified, # becomes constant; hence 
the second term g( #) is also constant. It is interesting to note that the first 
and second term when multiplied serve only as a scaling factor in either the 
torque or momentum equations. The third term, f (  cp )  , a function of the 
orbital angle cp = W t , determines the shape of both the torque and momentum 

when graphed as a function of orbital time. Since torque is, by definition, the 
time rate of change of momentum, those values of cp which make the torque 
zero produce maximum or minimum values for corresponding momentum 
components. 

0 
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Only the end and side view ATM configurations in a solar fixed orienta- 
tion have torque or  momentum components, equations (90) and (91) , that are 
a function of # - all the other equations a r e  independent of orbital inclination. 
The g( #) coefficients are plotted in Figure 18 as a function of both orbital 
inclination and the angle q9 . The gravity gradient effects a r e  maximized by 
letting 21, = 45 degrees, which corresponds to an orbital inclination of 21.5 
degrees. The biased torque components, those containing S 2 q  terms, produce 
momentum components that are secular. Since the biased and secular compo- 
nents a r e  multiplied by s( 22)) , they a re  maximized by # = 45 degrees. The 
secular momentum occurs about the Y-axis for the end view case where the 
difference in moments of inertia is greatest and about the X-axis for the side 
view case where the difference in moments of inertia is least. Hence the end 
view case will require more energy to maintain its orientation over a one-orbit 
or  longer time interval than the side view case. 

On examination of equations ( 90) and ( 91) with the aid of Figure 18, it 
is apparent that the biased torques and secular momentum can be zeroed out 
by letting # = 0 or 90 degrees . These values correspond to an orbital inclina- 
tion of -23.5 degrees or 66.5 degrees,respectively. However, orbital injection 
conditions other than h = 270 degrees and # = 180 degrees would produce 
different # values for which the gravity gradient effects would be maximized 
o r  minimized, although, as pointed out in Figure 5, the maximum or minimum 
values of # are  obtained a t  either a summer or  winter solstice launch. It is 
further noted that the end view case, equations (90) , reduces to the POP mode 
case, equations (921, for  # = 90 degrees, and that the two axes misalignment 
POP mode cases, equations (93) and (94),  also reduce to the P O P  mode case 
when the misalignment angles a re  zero. Next, the torque and momentum 
components will be evaluated for a selected vehicle configuration. 

The end and side view torque and momentum equations a re  evaluated 
using the vehicle data listed in  Table IV. Several selected values for the 
ecliptic-orbital plane angle a re  substituted into equations ( 90) and ( 91) . The 
results a r e  summarized in Tables VI and VI1 for q9 = 0, 45, 73.5, and 90 
degrees. The last column is the f (  cp )  multiplicative factor which completes 
the equations, that is, each equation is of the form 

where C is the first multiplicative term containing vehicle parameters, g( #) 
is the second multiplicative term, a function of orbital inclination, and f ( c p )  

73 



1 .o 

0.5 

0 

-0.5 

-1.0 

A 

B 

30 60 90 120 

I orque And hornenturn Scoling Functions 
_- 
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TABLE VI. END VIEW ATM TORQUE AND MOMENTUM 

i - 

X 
T 

T 

T 

H 

H 

H 

Y 

Z 

X 

Y 

Z 

- 
\ - 

X 
T 

T 

T 

H 

H 

H 

Y 

Z 

X 

Y 

Z 

0.225 SzC, 

10.67 S (2#) 

-10.44 czc, 

102 szc, 

4817 S2$ 

-4716 C$ 

zc,= 0 

0 

0 

-10.44 

0 

0 

-4716 

zc, = 45 

0.159 

10.67 

-7.38 

72. I 

481 7 

-3334 

$ =  73.5 

0.216 

5.82 

-2.96 

97.8 

2625 

-1339 

zc,= 90 

0.225 

0 

0 

102 

0 

0 

TABLE VII. SIDE VIEW ATM TORQUE AND MOMENTUM 

0.307 S2+ 

-10.46 Czl, 

10.15 SZC, 

138.8 S2q 

4723 CZC, 

-4584 Si) 

$ = O  

0 

-10.46 

0 

0 

4723 

0 

ZC, = 45 

0.307 

-7.40 

7.18 

138.8 

33 92 

-3241 

ZC, = 73.5 

0.167 

-2.97 

9.73 

75.65 

1341 

-4396 

zc,= 90 

0 

0 

10. 15 

0 

0 

-4584 
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is the third multiplicative term which determines the shape of the torque or  
momentum. The first and second terms are  grouped together to produce a 
scaling factor for each ?!J value. The f (  p) functions are plotted in Figure 19. 
Multiplying f (  cp)  by the appropriate scaling factor produces the torque and 
momentum components. 

The total angular momentum, a measure of energy required for attitude 
hold, is obtained by taking the square root of the sum of the components squared, 
that is 

Y Z (97) 

It is convenient to plot the torque and momentum components a s  well a s  the 
total angular momentum as a function of the orbital angle q = W t . To 

establish a reference point for momentum, the saturation value of a three-CMG 
system, a s  used on the ATM, is superimposed on the graphs of total momen- 
tum. 

0 

The torque and momentum for the end view ATM configuration in a solar 
inertially fixed orientation (Table VI) a r e  shown in Figures 20 through 24. Two 
cases for momentum have been plotted, one with the constants of integration 
evaluated to make the momentum zero a t  cp = 0 and the other with the constants 
of integration set equal to zero in which case the momentum at cp = 0 is not 
necessarily zero. A s  noted from Figure 20 the biased torque occurs about the 
Y-axis to produce a secular momentum component on the same axis as shown in 
both Figures 21 and 22. The biased torque is a maximum value since the 
differences in moments of inertia a r e  greatest in  the gravity gradient torque 
equation for the Y-axis. The secular momentum components exceed the 
3-CMG saturation level after one -fourth orbit for either momentum case with 
?!J = 45 degrees . The total momentum for each case is shown in Figures 23 and 
24. Note that about six CMG's would be required for attitude hold over one-half 
orbit. 

The torque and momentum for the side view ATM configuration (Table 
VII) in a semi-solar fixed orientation (XOP Mode) a r e  shown in Figures 25 
and 29. The biased torque component is about the X-axis, Figure 25, where the 
differences in inertias are least. Again two momentum cases are shown, 
Figures 26 and 27. Although the vehicle parameters are similar, the accumu- 
lated momentum for the XOP mode is much less than the end view ATM, solar 
fixed mode. This difference is due to constraining the axis of minimum principal 
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inertia to lie in the orbital plane. The momentum components for the two side 
view cases are different. Figure 26 indicates that the Y and Z momentum 
components are biased; whereas, Figure 27 indicates that they are cyclic. This 
difference is dramatically portrayed in Figures 28 and 29. With H(  0) = 0 , 
the 3-CMG saturation limit occurs before one-fourth orbit; whereas, for 
H( 0) f 0 , the limit is not reached in one orbit. Plotting the values shown in 
Figure 29 over a much longer time interval shows that the limit is reached 
after 7 orbits for zc) = 45 degrees and after 15 orbits for q5 = 73.5 degrees , 
corresponding to an inclination of 50 degrees (Fig. 30) .  Hence, a comparison 
of the two momentum cases illustrates the value of initialization. However, the 
conclusion should not be assumed that letting the constants of integration be 
zero [ H( 0) # 0 ] always procedures the least severe momentum requirements. 
Once the number of CMG's necessary for control has been determined, it is 
the secular momentum build-up that determines the time a t  which the CMG's 
must be desaturated. The number of CMG's is determined by the magnitude of 
momentum accumulated over the time interval during which pointing control 
must be maintained. Initialization is equivalent to mounting the CMG's so that 
the center of their linear operating range corresponds to that of the gravity 
gradient disturbance momentum. 
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The side view ATM configuration parameters are used in equations (92) 
to generate the torque and momentum components for the POP Mode case shown 
in Figure 31. A vehicle in the POP Mode orientation is in 
rium position. For a symmetric vehicle, both the torque 
be zero without axes misalignment; but since the side view con 
quite symmetric, a cyclic torque appears about the X-axis. Bo 
momentum a r e  in the noise level a s  compared to either the end or side view 
cases. However when axes misalignment cases a re  considered the torque and 
momentum requirements go up drastically. Figure 32 shows the torque and 
Figure 33 the momentum components for the principal axes being misaligned 
from the body axes by an angle of 6 degrees on each axis, equations ( 93).  Biased 
torque and secular momentum components appear about both the Y - and Z-axis. 
A similar result occurs for reference axes misalignment, equations ( 94) , which 
is shown in Figures 34 and 35. The total momentum, plotted in Figures 36 and 
37, indicates that either principal-body or reference-body axes misalignment 
produces the same magnitude of momentum requirements for attitude hold . 
against gravity torques. The torque and momentum components were evaluated 
for three misalignment angles,O. 6, 3.0, and 6 . 0  degrees,about each axis. 
Although the components are not shown for the first two angles, the total momen- 
tum is shown for each angle. The results indicate a linear increase in accum- 
ulated momentum as the angles a r e  increased. A three-degree angle produces 
4150 N-m-s momentum after a one-orbit time period, which is about the same 
a s  the end view case with initialization so that a 3-CMG system could provide 
control. A s  illustrated, the P O P  mode without misalignments produces vir-  
tually no control requirements, but a s  misalignment angles a re  introduced the 
requirements become rather severe. This trend would be expected to occur for 
the other modes o r  orientation, which poses the unanswered question: with 
what accuracy a re  the principal axes known for a large clustered space station ? 

Equation (95) represents a spacecraft in a gravity gradient stable 
mode; that is, the axis of minimum inertia is aligned with the local vertical 
and the axis of maximum inertia is aligned with the orbital spin vector. With- 
out axes misalignments, both the torque and momentum requirements are zero. 
A s  small misalignment e r r o r s  a re  introduced about each principal body axis, 
torque and momentum build up linearly about the Y- and Z-axes. For a given 
angle both the torque and momentum a r e  constant, hence graphs versus orbital 
position a r e  not shown. But the total momentum a s  a function of angle e r r o r s  
about the Y- and Z-axes is depicted in Figure 38. The 3-CMG saturation value 
is reached after one orbit by assuming a 3-degree misalignment angle about the 
principal axes. A 3-degree e r r o r  is equivalent to an angle of 4.24 degrees 
measured from the local vertical to the vehicle axis ‘of minimum inertia (the 
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X-axis). Since small angle approximations have been used, 8 is defined by 
the square root of the sum of the misalignment angles squared. 

Using 9 as a parameter and assuming that two principal axes of inertia 
a re  identical (I  = I ) , normalized momentum a s  a function of 8 is  shown i n  

Figure 39. This chart can readily be used for preliminary design, along with 
Figure 17, to determine fuel weight requirements. First the attitude error ,  
6 , from local vertical is e i ther  a s sumed  or calculated using equation (61) 
and the products of inertia. Then the normalized momentum value is obtained 
from Figure 39 and using specific vehicle parameters for ( I  - I ) the total 

momentum is calculated. Last ,  the equivalent fuel weight is determined 
using Figure 17. Using vehicle parameters for the side view ATM configura- 
tion, the fuel weight per orbit a s  a function of misalignment angles and attitude 
e r r o r  from the local vertical i s  shown in Figure 40. 

Y Z  

Y X  
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The energy requirements for attitude hold a r e  summarized for  various 
orientations in Table VI11 for z) = 45 degrees , a maximizing value. The type 
torque and the maximum accumulated momentum about each axis over a one- 
orbit time period is given for each mode. The number of control moment gyros 
is determined to counteract both the cyclic and secular gravity gradient momen- 
tum components over one-half orbit. Since the cyclic torques have a period 
one-half that of the orbit, the number of CMG's listed can counteract the cyclic 
components over an extended time period. Therefore, the pounds of fuel listed 
under each mode is the amount required to counteract only the secular momen- 
tum components that result from biased torques. In calculating the fuel weight 
per  orbit, a specific impulse of 220 seconds for the fuel and a RCS lever a r m  
of 10 feet a r e  assumed. If a 20-foot lever a r m  is assumed, the fuel weights 
listed would be halved. 

The maximum momentum values are obtained from the momentum 
component versus orbital position plots. The values listed with biased torques 
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a re  taken at the end of one orbit and represent secular momentum components. 
If there is more than one secular component. per  mode, a s  in Mode 4 POP 
( 6  degrees),  then the total value, the square root of the sum of secular compo- 
nents squared, is used for fuel weight calculations. Once the momentum is 
determined, the fuel weight per orbit is obtained by using Figure 17. Since a 
spacecraft makes about fifteen orbits per day in a 270 n. mi. orbit , daily fuel 
consumption is obtained by multiplying the fuel per  orbit by fifteen. 

e 

In comparing the solar fixed modes the advantage of the side view ATM 
configuration with the axes of minimum inertia in  the orbital plane (XOP Mode) 
over the end view ATM configuration (Solar Mode) is apparent. The solar mode 
requires 6-CMG's and 55 845 pounds of fuel per  year, whereas the XOP mode 
only requires 3-CMG's and 8760 pounds of fuel per year. The solar mode, with 
JI = 45 degrees, represents the worst possible case; because axes misalign- 
ments would, in this case, reduce energy requirements, whereas axes mis- 
alignments on the optimized XOP mode would increase energy requirements. 

There a r e  no biased torques in the POP mode case and the cyclic com- 
ponents are small in magnitude. For comparative purposes an all RCS control , 

system is assumed, and the fuel weights listed a r e  those required to counteract 
the cyclic torque. After one-fourth orbit the maximum accumulated momentum 
is 278 N-m-s [in Figure 31, H( 0) = 0 J , after which the momentum decreases 
to zero a t  one-half orbit. During the period from cp = 90 degrees to 180 degrees, 
momentum equal to 278 N-m-s is taken from the system. Hence the total 
momentum for one orbit is 4 x  278 N-m-s = 1112 N-m-s which is equivalent 
to 0.4 pound of fuel per orbit (taken from Figure 17 and listed in Table VIII). 
However, when axes misalignments a re  introduced, Mode 4 POP ( 6  degrees) 
in  Table VIII, secular momentum components appear about both the Y- and 
Z-axes resulting in a factor of seven increase in  fuel requirements for 6 degrees 
misalignment as compared to the no misalignment case. 

A vehicle in a gravity gradient hold mode with 6degree misalignments 
about each principal axis experiences constant magnitude torques. The case 
represented by Mode 5 G.G. ( 6  degrees) of Table VI11 is equivalent to attitude 
hold with the axis of minimum inertia a t  an angle of 8.4 degrees to the local 
vertical. Constant magnitude torques produce momentum which increases 
linearly with orbital time. Af t e r  one orbit at 270 n.mi. the total accumulated 
momentum is 16 500 N-m-s (Fig. 38) which required a fuel weight of 5.6 pounds 
( Fig. 17) . However, the same results can be directly obtained from Figure 40 
which gives the fuel weight as a function of the misalignment angles for the side 
view ATM configuration. When compared with the POP mode misalignment case, 
the gravity gradient mode with misalignments requires twice a s  much fuel for 
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attitude hold, an unexpected result. However, the POP mode has  one axis 
oriented in the plane defined by a vector perpendicular to the orbital plane 
and the sun line vector ; hence the vehicle continuously rolls with respect to the 
local vertical. In the G . G .  mode, the vehicle is stationary with respect to the 
local vertical. The vehicle can be made stationary in the POP mode with respect 
to the local vertical by setting cp = 0 in either equations (93)  or (94) , in which 
case constant torques appear about the X- and Z-axes and the Y-axis component 
is zero. Since the vehicle is near symmetric about X-axis, the X-axis torque 
and momentum is near zero, and the Z-axis contributes most of the momentum 
requirements which are one-half that of the G . G .  mode. But if the POP mode 
is rotated 90 degrees so that the X-axis is aligned with the velocity vector then 
the momentum is identical with the G . G .  case with constant torques on the Y- 
and Z-axes. The conclusion is that axes misalignment effects are twice as 
severe for a G . G .  mode as for  a POP mode. 

CONCLUSIONS AND RECOMMENDATIONS 

In the previous sections the basic gravity gradient torque and momentum 
equations have been derived for a spacecraft in an earth orbit. Various coor- 
dinate systems were then defined in order to specify the spacecraft's position at 
any time relative to an inertial reference frame and to resolve the local radius 
vector into body fixed components. Transformations relating the defined coor- 
dinate systems were derived in the form of a matrix composed of directional 
cosines. Next, several specific vehicle attitude hold orientations, a s  solar 
inertial, XOP and POP modes, were selected and the gravity gradient torque 
equations were derived for each case, utilizing the transformational matrix to 
resolve the local vertical vector into body axes components. Then, the effects 
of body axes misalignments on gravity torque w e r e  considered and expressions 
for several "look angles" of interest were derived. Finally, the energy 
requirements for attitude hold against gravity gradient were calculated for the 
previously selected orientations and a comparison between attitude hold modes 
was made. 

Based on the energy requirements, the POP mode with the axis of 
minimum inertia aligned perpendicular to the orbital plane optimizes fuel and 
CMG requirements, especially when principal axes misalignments a re  con- 
sidered. If a solar inertially fixed mode is desired, then constraining the axis 
of minimum inertia to lie in the orbital plane (XOP mode) results in minimum 
energy requirements. Furthermore, momentum storage initialization can be 
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effectively utilized to reduce either the number of CMG's or the size required 
for control of cyclic perturbations, especially for the POP mode orientation. 
The equations developed for the various attitude hold modes can easily be adapted 
for use on configurations other than the side and end view ATM workshops. 

The coordinate systems and transformations can be utilized to evaluate 
the effect of time of year and time of launch on gravity gradient torques, provid- 
ing a means of relating the orbital, equatorial and ecliptic planes through 
physically meaningful parameters. The resulting directional cosines can be 
quickly evaluated for fixed time of year and orbital plane analysis which produces 
simplified transformations that can be used to evaluate the gravity torque and 
momentum components without resorting to elaborate machine computations. 
It has been shown that these simplified components are always scaled sine or  
cosine functions, f (  rp) , of the orbital angle (Fig. 19) . For preliminary 
design purposes, the scaling factor is determined using specified vehicle and 
orbital parameters, then the torque o r  momentum component is obtained by 
multiplying the scaling factor by the appropriate f (  cp )  function. Energy require- 
ments to counteract gravity gradient is the dominant consideration in recommend- 
ing a preferred attitude hold orientation. 

The equations derived for  various look angles enable the engineer to 
determine gimbal angle limits and rates required for experiment pointing con- 
trol. Also, the solar look angles help establish both solar panel and ATM gim- 
bal requirements, especially if the OWS is in an orbital fixed mode, such as 
POP. Closed form solutions are given for several angles of interest; others 
can be readily derived using the defined coordinate systems and transformations. 

Addtional work should be done to relate momentum components to fuel 
weight and CMG requirements for various attitude hold orientations. Nomo- 
graphs could be prepared in normalized nondimensional form for each specific 
orientation, and utilized for "quick look" analysis needed to size the control 
system and establish fuel storage requirements. Basic stability characteristics 
and sensor locations should be related to vehicle orientation and the various 
attitude hold modes. 
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APPENDIX 

EULER EQUATIONS 

For completeness, a derivation of the Euler equations is outlined below, 
along with a systematic procedure for obtaining the Euler kinematic relations. 
The Euler equations express the rotational dynamics of an orbiting spacecraft 
in response to the applied torques as functions of the vehicle inertial properties 
and body angular rates. The Euler kinematic relations are three equations 
which express the body angular rates a s  functions of the transformational angles 
and rates used in the directional cosine matrix relating the body and inertial 
reference coordinate systems. 

The torque required to change the angular momentum of a system is 
equal to the time rate of change in angular momentum, from equation (55) 
the angular momentum is given by 

Hence, the applied torque T is equal to 

Carrying out the vector-matrix operations and regrouping terms, the compo- 
nents of torque a r e  

T = h  t h o  - h w  
X X Z Y  Y Z  

T = h  + h w  - h a  
x z  z x  , Y Y 

and 

T = &  + h w  - h w  
Z Z Y X  X Y  

Equations (A3)  are known a s  Euler's moment equations. The components of 
H are defined by equation (54) as 
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h = I O  - I  w - I  w 
X x x  x y y  x z z  ’ 

h = - I  w + I w  - I  w 
Y F X  Y Y  Y Z Z  

, 

and 

h = I  w - I  w + I Z w z  
Z zx x ZY Y 

Assuming that principal axes are selected as control axes, the products 
of inertia are zero. By setting the applied torques ( T  T , and T ) equal 

to the gravity gradient torques of equation (10)’ the Euler equations (A3) for 
principal contr ol axes become 

x’ Y z 

T x = I &  + ( I  - I ) w w  = C R R  
x x  z Y Z Y  X Z Y  

T = I &  + (I - I Z ) w w  = C R R  
Y Y Y  X x z  Y X Z  

and 

T = I &  + ( I  - I ) w w  = C R R  
z z z  Y x Y X  Z Y X  

The applied gravity torques contain components of the local radius 
vector which are known functions of the directional cosines in the transforma- 
tional matrix that relates the inertial and moving body reference frames. The 
Euler equations contain components of angular velocity which a re  known only 
in general body axis components. However, if the directional cosine matrix 
is known the components of angular velocity can be obtained as  functions of the 
rotational angular rates, which are then substituted into Euler’s moment 
equations. 

Consider the rows of the transformational matrix as vectors, 

A =  
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It can be shown that 

- - w = e 2 * e 3  , 
X 

- - w = e3 el 
Y ¶ 

and 

- - w = el * e2 
Z 

Equations (A7) relate the body axes angular rates to rotational rates 
and angles used in the transformation matrix and are known as Euler's kine- 
matical relations. These relations are commonly derived by transforming each 
angular rate into body coordinates and then summing the components to produce 
the body angular rates ( w  , w , w z )  . The Euler kinematic relations, however, 

can be obtained by a systematic procedure using equations (A7) , after which the 
body angular rates are substituted into the Euler equations (A5) to obtain the 
dynamic rotational equations for an earth orbiting spacecraft under the influence 
of gravity. 

X Y  

I 0 1  
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Mr.  B a r k e r  (5) 

PD-DO-P 
Dr.  Thomae (5)  

PD-DO-E 
Mr.  Digesu (15) 

PD-DO-ES 
Mr.  Davis (50) 

S&E-AERO-DLR 
Dr.  Ge i s s l e r  (10) 

S&E-AERO-D 
Mr.  Rheinfur th  (5) 

S&E -ASTN - D m  
Mr .  Heimburg  (5) 

S&E -AS TR -DIR 
Mr. Moore (10) 

S &E -A STR -N 
Mr . Hosenthien (5)  

S&E - COMP-DIR 
Dr.  Hoelzer  (5) 

S&E -CSE-DIR 
Dr .  Haeusse rmann  (5) 
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D ISTR I3UT18N (Concluded) 

S&E-CSE-A 
Dr.  McDonough (2) 

S&E - CSE -S  
Mr.  Wiesenmaier  (5)  

S &E - ME -DIR 
Dr .  Siebel (2 )  

S &E - P - DIR 
Mr.  Vreuls  (2)  

S&E-SSL-DIR 
Mr.  Hel le r  (2)  

P M - P R - M  
Mr. Goldston 

A & TS - P A  T 

A &TS -MS-H 

A&TS- MS-IP 

A&TS-MS-IL (8)  

A&TS-MS-TU (6) 

EXTERNAL 

Dr .  Walter  Green  (2 )  
Dept. of E lec t r i ca l  Engineer ing 
Universi ty  of Tennessee  --- 
Knoxville, Tennessee  37616 

Mr.  J .  Kranton (2) 
Bel lcomm, Inc. 
1100 Seventeenth Street ,  NW 
Washington, D. C. 20036 

Dr .  W. Trautwein ( 2 )  
Lockheed Miss i les  & Space Co. 
R e s e a r c h  P a r k  
Huntsvil le,  Alabama 35805 

Scientific and Te chnical Information 

Attn: NASA Representa t ive  (S-AK/RKT) 
P. 0. Box 33 
College P a r k ,  Maryland 20740 

Fac i l i ty  (25) 

Mr .  Ca rey  F. Lively, Jr .  (5)  
G&C Systems Analysis ,  EG23 
NASA 
Manned Space craft Center  
Houston, Texas 77058 

Dr .  L a r r y  Jacowitz (2)  
IBM Space Sys tems Center  
Huntsvil le,  Alabama 35805 
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